scholarly journals Ploidy variation and its implications for reproduction and population dynamics in two sympatric Hawaiian coral species

2021 ◽  
Author(s):  
Timothy G Stephens ◽  
Emma L Strand ◽  
Amin R Mohamed ◽  
Amanda Williams ◽  
Eric N Chiles ◽  
...  

The response of coral reef ecosystems to anthropogenic climate change is driven by a complex interaction between location, stress history, species composition, and genetic background of the reef system. The latter two factors are particularly relevant when considering the different reproductive strategies used by coral species. We studied the stress resistant coral Montipora capitata and the more stress sensitive Pocillopora acuta from Kāneʻohe Bay, Oʻahu, Hawaiʻi. High-quality genome assemblies were generated for both species with the M. capitata assembly at chromosome-level resolution and the P. acuta assembly derived from a triploid colony, representing the first non-diploid genome generated from a coral. We report significant differences in the reproductive strategies of these coral species that not only affect the genetic structure of their populations in Kāneʻohe Bay, but also impact algal symbiont composition. Single-nucleotide polymorphism analysis shows that P. acuta comprises at least nine distinct genotypes in the bay with ancestral diploid and derived triploid lineages. In contrast, M. capitata colonies are diploids with nearly all being genotypically distinct. Genotype has a strong effect on gene expression profiles in these species, largely outweighing the effects of environmental stress. Our insights advance understanding of how reproductive strategy and ploidy can vary between different coral species and among local populations, how these factors constrain coral holobiont genetic diversity, and how genotype constrains genome-wide gene expression.

2019 ◽  
Vol 21 (2) ◽  
pp. 151-160 ◽  
Author(s):  
Xiangcheng Yuan ◽  
Hui Huang ◽  
Weihua Zhou ◽  
Yajuan Guo ◽  
Tao Yuan ◽  
...  

2007 ◽  
Vol 73 (15) ◽  
pp. 4905-4914 ◽  
Author(s):  
M. M. Klerks ◽  
M. van Gent-Pelzer ◽  
E. Franz ◽  
C. Zijlstra ◽  
A. H. C. van Bruggen

ABSTRACT This paper describes the physiological and molecular interactions between the human-pathogenic organism Salmonella enterica serovar Dublin and the commercially available mini Roman lettuce cv. Tamburo. The association of S. enterica serovar Dublin with lettuce plants was first determined, which indicated the presence of significant populations outside and inside the plants. The latter was evidenced from significant residual concentrations after highly efficient surface disinfection (99.81%) and fluorescence microscopy of S. enterica serovar Dublin in cross sections of lettuce at the root-shoot transition region. The plant biomass was reduced significantly compared to that of noncolonized plants upon colonization with S. enterica serovar Dublin. In addition to the physiological response, transcriptome analysis by cDNA amplified fragment length polymorphism analysis also provided clear differential gene expression profiles between noncolonized and colonized lettuce plants. From these, generally and differentially expressed genes were selected and identified by sequence analysis, followed by reverse transcription-PCR displaying the specific gene expression profiles in time. Functional grouping of the expressed genes indicated a correlation between colonization of the plants and an increase in expressed pathogenicity-related genes. This study indicates that lettuce plants respond to the presence of S. enterica serovar Dublin at physiological and molecular levels, as shown by the reduction in growth and the concurrent expression of pathogenicity-related genes. In addition, it was confirmed that Salmonella spp. can colonize the interior of lettuce plants, thus potentially imposing a human health risk when processed and consumed.


2004 ◽  
Vol 171 (4S) ◽  
pp. 349-350
Author(s):  
Gaelle Fromont ◽  
Michel Vidaud ◽  
Alain Latil ◽  
Guy Vallancien ◽  
Pierre Validire ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document