scholarly journals Ikaros family proteins regulate developmental windows in the mouse retina through convergent and divergent transcriptional programs

2021 ◽  
Author(s):  
Awais Javed ◽  
Pierre Mattar ◽  
Allie Cui ◽  
Michel Cayouette

ABSTRACTTemporal identity factors regulate the competence of neural progenitors to generate specific cell types in a time-dependent manner, but how they operate remains poorly defined. In the developing mouse retina, the Ikaros zinc finger transcription factor Ikzf1 regulates the production of early-born cell types, except cone photoreceptors. In this study we show that Ikzf4, another Ikaros family protein, cooperates with Ikzf1 to control cone photoreceptor production during early stages of retinal development, whereas at late stages, when Ikzf1 is no longer expressed in progenitors, Ikzf4 is instead required for Müller glia production. Using CUT&RUN sequencing, we find that both Ikzf1 and Ikzf4 generally bind to the same genes involved in cone development and other early-born fates, but at different cis-regulatory elements. In late-stage progenitors, Ikzf4 re-localizes to bind target genes involved in Müller glia development and regulate their expression. Specifically, we show that Ikzf4 maintains Hes1 expression in differentiating cells using two Ikzf GGAA binding sites at the Hes1 promoter, thereby favouring Müller glia fate commitment. These results uncover a combinatorial role for Ikaros family members in nervous system development and provide mechanistic insights on how they temporally regulate cell fate output.

2019 ◽  
Author(s):  
Rangarajan D. Nadadur ◽  
Carlos Perez-Cervantes ◽  
Nicolas Lonfat ◽  
Linsin A. Smith ◽  
Andrew E. O. Hughes ◽  
...  

AbstractIdentification of the cis-regulatory elements (CREs) that regulate gene expression in specific cell types is critical for defining the gene regulatory networks (GRNs) that control normal physiology and disease states. We previously utilized non-coding RNA (ncRNA) profiling to define CREs that comprise a GRN in the adult mouse heart1. Here, we applied ncRNA profiling to the mouse retina in the presence and absence of Nrl, a rod photoreceptor-specific transcription factor required for rod versus cone photoreceptor cell fate. Differential expression of Nrl-dependent ncRNAs positively correlated with differential expression of Nrl-dependent local genes. Two distinct Nrl-dependent regulatory networks were discerned in parallel: Nrl-activated ncRNAs were enriched for accessible chromatin in rods but not cones whereas Nrl-repressed ncRNAs were enriched for accessible chromatin in cones but not rods. Furthermore, differential Nrl-dependent ncRNA expression levels quantitatively correlated with photoreceptor cell type-specific ATAC-seq read density. Direct assessment of Nrl-dependent ncRNA-defined loci identified functional cone photoreceptor CREs. This work supports differential ncRNA profiling as a platform for identifying context-specific regulatory elements and provides insight into the networks that define photoreceptor cell types.


2021 ◽  
Author(s):  
Jasper Janssens ◽  
Sara Aibar ◽  
Ibrahim Ihsan Taskiran ◽  
Joy N. Ismail ◽  
Katina I. Spanier ◽  
...  

The Drosophila brain is a work horse in neuroscience. Single-cell transcriptome analysis, 3D morphological classification, and detailed EM mapping of the connectome have revealed an immense diversity of neuronal and glial cell types that underlie the wide array of functional and behavioral traits in the fruit fly. The identities of these cell types are controlled by still unknown gene regulatory networks (GRNs), involving combinations of transcription factors that bind to genomic enhancers to regulate their target genes. To characterize the GRN for each cell type in the Drosophila brain, we profiled chromatin accessibility of 240,919 single cells spanning nine developmental timepoints, and integrated this data with single-cell transcriptomes. We identify more than 95,000 regulatory regions that are used in different neuronal cell types, of which around 70,000 are linked to specific developmental trajectories, involving neurogenesis, reprogramming and maturation. For 40 cell types, their uniquely accessible regions could be associated with their expressed transcription factors and downstream target genes, through a combination of motif discovery, network inference techniques, and deep learning. We illustrate how these enhancer-GRNs can be used to reveal enhancer architectures leading to a better understanding of neuronal regulatory diversity. Finally, our atlas of regulatory elements can be used to design genetic driver lines for specific cell types at specific timepoints, facilitating the characterization of brain cell types and the manipulation of brain function.


2020 ◽  
Author(s):  
SK Reilly ◽  
SJ Gosai ◽  
A Gutierrez ◽  
JC Ulirsch ◽  
M Kanai ◽  
...  

AbstractCRISPR screens for cis-regulatory elements (CREs) have shown unprecedented power to endogenously characterize the non-coding genome. To characterize CREs we developed HCR-FlowFISH (Hybridization Chain Reaction Fluorescent In-Situ Hybridization coupled with Flow Cytometry), which directly quantifies native transcripts within their endogenous loci following CRISPR perturbations of regulatory elements, eliminating the need for restrictive phenotypic assays such as growth or transcript-tagging. HCR-FlowFISH accurately quantifies gene expression across a wide range of transcript levels and cell types. We also developed CASA (CRISPR Activity Screen Analysis), a hierarchical Bayesian model to identify and quantify CRE activity. Using >270,000 perturbations, we identified CREs for GATA1, HDAC6, ERP29, LMO2, MEF2C, CD164, NMU, FEN1 and the FADS gene cluster. Our methods detect subtle gene expression changes and identify CREs regulating multiple genes, sometimes at different magnitudes and directions. We demonstrate the power of HCR-FlowFISH to parse genome-wide association signals by nominating causal variants and target genes.


2020 ◽  
Author(s):  
James D. Hocker ◽  
Olivier B. Poirion ◽  
Fugui Zhu ◽  
Justin Buchanan ◽  
Kai Zhang ◽  
...  

ABSTRACTBackgroundCis-regulatory elements such as enhancers and promoters are crucial for directing gene expression in the human heart. Dysregulation of these elements can result in many cardiovascular diseases that are major leading causes of morbidity and mortality worldwide. In addition, genetic variants associated with cardiovascular disease risk are enriched within cis-regulatory elements. However, the location and activity of these cis-regulatory elements in individual cardiac cell types remains to be fully defined.MethodsWe performed single nucleus ATAC-seq and single nucleus RNA-seq to define a comprehensive catalogue of candidate cis-regulatory elements (cCREs) and gene expression patterns for the distinct cell types comprising each chamber of four non-failing human hearts. We used this catalogue to computationally deconvolute dynamic enhancers in failing hearts and to assign cardiovascular disease risk variants to cCREs in individual cardiac cell types. Finally, we applied reporter assays, genome editing and electrophysiogical measurements in in vitro differentiated human cardiomyocytes to validate the molecular mechanisms of cardiovascular disease risk variants.ResultsWe defined >287,000 candidate cis-regulatory elements (cCREs) in human hearts at single-cell resolution, which notably revealed gene regulatory programs controlling specific cell types in a cardiac region/structure-dependent manner and during heart failure. We further report enrichment of cardiovascular disease risk variants in cCREs of distinct cardiac cell types, including a strong enrichment of atrial fibrillation variants in cardiomyocyte cCREs, and reveal 38 candidate causal atrial fibrillation variants localized to cardiomyocyte cCREs. Two such risk variants residing within a cardiomyocyte-specific cCRE at the KCNH2/HERG locus resulted in reduced enhancer activity compared to the non-risk allele. Finally, we found that deletion of the cCRE containing these variants decreased KCNH2 expression and prolonged action potential repolarization in an enhancer dosage-dependent manner.ConclusionsThis comprehensive atlas of human cardiac cCREs provides the foundation for not only illuminating cell type-specific gene regulatory programs controlling human hearts during health and disease, but also interpreting genetic risk loci for a wide spectrum of cardiovascular diseases.


2004 ◽  
Vol 24 (6) ◽  
pp. 2546-2559 ◽  
Author(s):  
Joshua P. Frederick ◽  
Nicole T. Liberati ◽  
David S. Waddell ◽  
Yigong Shi ◽  
Xiao-Fan Wang

ABSTRACT Smad proteins are the most well-characterized intracellular effectors of the transforming growth factor β (TGF-β) signal. The ability of the Smads to act as transcriptional activators via TGF-β-induced recruitment to Smad binding elements (SBE) within the promoters of TGF-β target genes has been firmly established. However, the elucidation of the molecular mechanisms involved in TGF-β-mediated transcriptional repression are only recently being uncovered. The proto-oncogene c-myc is repressed by TGF-β, and this repression is required for the manifestation of the TGF-β cytostatic program in specific cell types. We have shown that Smad3 is required for both TGF-β-induced repression of c-myc and subsequent growth arrest in keratinocytes. The transcriptional repression of c-myc is dependent on direct Smad3 binding to a novel Smad binding site, termed a repressive Smad binding element (RSBE), within the TGF-β inhibitory element (TIE) of the c-myc promoter. The c-myc TIE is a composite element, comprised of an overlapping RSBE and a consensus E2F site, that is capable of binding at least Smad3, Smad4, E2F-4, and p107. The RSBE is distinct from the previously defined SBE and may partially dictate, in conjunction with the promoter context of the overlapping E2F site, whether the Smad3-containing complex actively represses, as opposed to transactivates, the c-myc promoter.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 231-243 ◽  
Author(s):  
M C Soto ◽  
T B Chou ◽  
W Bender

Abstract The genes of the Polycomb group (PcG) repress the genes of the bithorax and Antennapedia complexes, among others. To observe a null phenotype for a PcG gene, one must remove its maternal as well as zygotic contribution to the embryo. Five members of the PcG group are compared here: Enhancer of Polycomb [E(Pc)], Additional sex combs (Asx), Posterior sex combs (Psc), Suppressor of zeste 2 [Su (z) 2] and Polycomblike (Pcl). The yeast recombinase (FLP) system was used to induce mitotic recombination in the maternal germline. Mutant embryos were analyzed by staining with antibodies against six target genes of the PcG. The loss of the maternal component leads to enhanced homeotic phenotypes and to unique patterns of misexpression. E(Pc) and Su(z) 2 mutations had only subtle effects on the target genes, even when the maternal contributions were removed. Asx and Pcl mutants show derepression of the targets only in specific cell types. Psc shows unusual effects on two of the targets, Ultrabithorax and abdominal-A. These results show that the PcG genes do not act only in a common complex or pathway; they must have some independent functions.


2019 ◽  
Vol 33 (8) ◽  
pp. 8745-8758 ◽  
Author(s):  
Onkar B. Sawant ◽  
Vijay K. Jidigam ◽  
Rebecca D. Fuller ◽  
Olivia F. Zucaro ◽  
Cristel Kpegba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document