scholarly journals AttentionSiteDTI: Attention Based Model for Predicting Drug-Target Interaction Using 3D Structure of Protein Binding Sites

2021 ◽  
Author(s):  
Mehdi Yazdani-Jahromi ◽  
Niloofar Yousefi ◽  
Aida Tayebi ◽  
Ozlem Ozmen Garibay ◽  
Sudipta Seal ◽  
...  

Investigating drug-target interactions plays a critical role in drug design and discovery. The vast chemical and proteomic space, along with the cost associated with invirto experiments motivate the use of computational methods to narrow down the search space for novel interaction of drug target pairs. Among all computational methods, deep learning algorithms have gained increased attention due to their power in automatically learning and extracting feature representations, and therefore identifying, processing and extrapolating complex hidden interactions between drugs and targets. In this study, we introduce and implement a new graph-based prediction model called AttentionSiteDTI. Our proposed model utilize the binding sites (pockets) of the proteins as the input for the target protein, and it uses a self-attention mechanism to make the model learn which binding sites of the protein interact with a given ligand. This, indeed, complements the black-box nature of deep learning-based methods and enables interpretability, while achieving state of the art results in drug target interaction prediction task on three datasets. The AttentionSite DTI achieves AUC of 0.97 (for seen proteins), 0.94 (for unseen proteins) in the customized BindingDB dataset, 0.971 in the DUD-E dataset, and 0.991 in the human dataset. In general, the prediction results on these datasets show the superiority of our AttentionSiteDTI compared to previous graph-based models, and our ablation studies proves the effectiveness of our proposed model in prediction of drug-target interactions. In addition, through multidisciplinary collaboration in this work, we further experimentally evaluate the practical potential of our proposed approach. To achieve this, we first computationally predict binding interaction of some candidate compounds with a target protein, and then experimentally validate the binding interactions for these pairs in the laboratory. The high agreement between the computationally-predicted and experimentally observed (measured) drug-target interactions illustrates the potential of our AttentionSiteDTI as effective pre-screening tool in drug repurposing applications.

Author(s):  
Kexin Huang ◽  
Tianfan Fu ◽  
Lucas M Glass ◽  
Marinka Zitnik ◽  
Cao Xiao ◽  
...  

Abstract Summary Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets. Availability and implementation https://github.com/kexinhuang12345/DeepPurpose. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 20 (3) ◽  
pp. 194-202 ◽  
Author(s):  
Wen Zhang ◽  
Weiran Lin ◽  
Ding Zhang ◽  
Siman Wang ◽  
Jingwen Shi ◽  
...  

Background:The identification of drug-target interactions is a crucial issue in drug discovery. In recent years, researchers have made great efforts on the drug-target interaction predictions, and developed databases, software and computational methods.Results:In the paper, we review the recent advances in machine learning-based drug-target interaction prediction. First, we briefly introduce the datasets and data, and summarize features for drugs and targets which can be extracted from different data. Since drug-drug similarity and target-target similarity are important for many machine learning prediction models, we introduce how to calculate similarities based on data or features. Different machine learningbased drug-target interaction prediction methods can be proposed by using different features or information. Thus, we summarize, analyze and compare different machine learning-based prediction methods.Conclusion:This study provides the guide to the development of computational methods for the drug-target interaction prediction.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1325
Author(s):  
Yoonjung Choi ◽  
Bonggun Shin ◽  
Keunsoo Kang ◽  
Sungsoo Park ◽  
Bo Ram Beck

Previously, our group predicted commercially available Food and Drug Administration (FDA) approved drugs that can inhibit each step of the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using a deep learning-based drug-target interaction model called Molecule Transformer-Drug Target Interaction (MT-DTI). Unfortunately, additional clinically significant treatment options since the approval of remdesivir are scarce. To overcome the current coronavirus disease 2019 (COVID-19) more efficiently, a treatment strategy that controls not only SARS-CoV-2 replication but also the host entry step should be considered. In this study, we used MT-DTI to predict FDA approved drugs that may have strong affinities for the angiotensin-converting enzyme 2 (ACE2) receptor and the transmembrane protease serine 2 (TMPRSS2) which are essential for viral entry to the host cell. Of the 460 drugs with Kd of less than 100 nM for the ACE2 receptor, 17 drugs overlapped with drugs that inhibit the interaction of ACE2 and SARS-CoV-2 spike reported in the NCATS OpenData portal. Among them, enalaprilat, an ACE inhibitor, showed a Kd value of 1.5 nM against the ACE2. Furthermore, three of the top 30 drugs with strong affinity prediction for the TMPRSS2 are anti-hepatitis C virus (HCV) drugs, including ombitasvir, daclatasvir, and paritaprevir. Notably, of the top 30 drugs, AT1R blocker eprosartan and neuropsychiatric drug lisuride showed similar gene expression profiles to potential TMPRSS2 inhibitors. Collectively, we suggest that drugs predicted to have strong inhibitory potencies to ACE2 and TMPRSS2 through the DTI model should be considered as potential drug repurposing candidates for COVID-19.


2021 ◽  
Author(s):  
Rishal Aggarwal ◽  
Akash Gupta ◽  
Vineeth Chelur ◽  
C. V. Jawahar ◽  
U. Deva Priyakumar

<div> A structure-based drug design pipeline involves the development of potential drug molecules or ligands that form stable complexes with a given receptor at its binding site. A prerequisite to this is finding druggable and functionally relevant binding sites on the 3D structure of the protein. Although several methods for detecting binding sites have been developed beforehand, a majority of them surprisingly fail in the identification and ranking of binding sites accurately. The rapid adoption and success of deep learning algorithms in various sections of structural biology beckons the usage of such algorithms for accurate binding site detection. As a combination of geometry based software and deep learning, we report a novel framework, DeepPocket that utilises 3D convolutional neural networks for the rescoring of pockets identified by Fpocket and further segments these identified cavities on the protein surface. Apart from this, we also propose another dataset SC6K containing protein structures submitted in the Protein Data Bank (PDB) from January 2018 till February 2020 for ligand binding site (LBS) detection. DeepPocket's results on various binding site datasets and SC6K highlights its better performance over current state-of-the-art methods and good generalization ability over novel structures. </div><div><br></div>


BMC Genomics ◽  
2018 ◽  
Vol 19 (S7) ◽  
Author(s):  
Lingwei Xie ◽  
Song He ◽  
Xinyu Song ◽  
Xiaochen Bo ◽  
Zhongnan Zhang

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Seyedeh Zahra Sajadi ◽  
Mohammad Ali Zare Chahooki ◽  
Sajjad Gharaghani ◽  
Karim Abbasi

Abstract Background Drug–target interaction (DTI) plays a vital role in drug discovery. Identifying drug–target interactions related to wet-lab experiments are costly, laborious, and time-consuming. Therefore, computational methods to predict drug–target interactions are an essential task in the drug discovery process. Meanwhile, computational methods can reduce search space by proposing potential drugs already validated on wet-lab experiments. Recently, deep learning-based methods in drug-target interaction prediction have gotten more attention. Traditionally, DTI prediction methods' performance heavily depends on additional information, such as protein sequence and molecular structure of the drug, as well as deep supervised learning. Results This paper proposes a method based on deep unsupervised learning for drug-target interaction prediction called AutoDTI++. The proposed method includes three steps. The first step is to pre-process the interaction matrix. Since the interaction matrix is sparse, we solved the sparsity of the interaction matrix with drug fingerprints. Then, in the second step, the AutoDTI approach is introduced. In the third step, we post-preprocess the output of the AutoDTI model. Conclusions Experimental results have shown that we were able to improve the prediction performance. To this end, the proposed method has been compared to other algorithms using the same reference datasets. The proposed method indicates that the experimental results of running five repetitions of tenfold cross-validation on golden standard datasets (Nuclear Receptors, GPCRs, Ion channels, and Enzymes) achieve good performance with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document