scholarly journals Variable oxygen environments and DNMT2 determine the DNA cytosine epigenetic landscape of Plasmodium falciparum

2021 ◽  
Author(s):  
Artur Scherf ◽  
Elie Hammam ◽  
Samia Miled ◽  
Frederic Bonhomme ◽  
Benoit Arcangioli ◽  
...  

DNA cytosine methylation and its oxidized products are important epigenetic modifications in mammalian cells. Although 5-methylcytosine (5mC) was detected in the human malaria parasite Plasmodium falciparum, the presence of oxidized 5mC forms remain to be characterized.Here we establish a protocol to explore nuclease-based DNA digestion for the extremely AT-rich genome of P. falciparum (>80% A+T) for quantitative LC-MS/MS analysis of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). We demonstrate the presence of 5hmC, 5fC and 5caC cytosine modifications in a DNMT2-only organism and observe striking ratio changes between 5mC and 5hmC during the 48-hour blood stage parasite development. Parasite-infected red blood cells cultured in different physiological oxygen concentrations revealed a shift in the cytosine modifications distribution towards the oxidized 5hmC and 5caC forms. In the absence of the canonical C5-DNA methyltransferase (DNMT1 and DNMT3A/B) in P. falciparum, we show that all cytosine modifications depend on the presence of DNMT2. We conclude that DNMT2 and oxygen levels are critical determinants that shape the dynamic cytosine epigenetic landscape in this human pathogen.

2019 ◽  
Vol 15 (6) ◽  
pp. 20190275 ◽  
Author(s):  
Jessica L. Waite ◽  
Eunho Suh ◽  
Penelope A. Lynch ◽  
Matthew B. Thomas

The rate of malaria transmission is strongly determined by parasite development time in the mosquito, known as the extrinsic incubation period (EIP), since the quicker parasites develop, the greater the chance that the vector will survive long enough for the parasite to complete development and be transmitted. EIP is known to be temperature-dependent but this relationship is surprisingly poorly characterized. There is a single degree-day model for EIP of Plasmodium falciparum that derives from a limited number of poorly controlled studies conducted almost a century ago. Here, we show that the established degree-day model greatly underestimates the rate of development of P. falciparum in both Anopheles stephensi and An. gambiae mosquitoes at temperatures in the range of 17–20°C. We also show that realistic daily temperature fluctuation further speeds parasite development. These novel results challenge one of the longest standing models in malaria biology and have potentially important implications for understanding the impacts of future climate change.


2019 ◽  
Vol 48 (1) ◽  
pp. 184-199 ◽  
Author(s):  
Elie Hammam ◽  
Guruprasad Ananda ◽  
Ameya Sinha ◽  
Christine Scheidig-Benatar ◽  
Mylene Bohec ◽  
...  

Abstract DNA cytosine modifications are key epigenetic regulators of cellular processes in mammalian cells, with their misregulation leading to varied disease states. In the human malaria parasite Plasmodium falciparum, a unicellular eukaryotic pathogen, little is known about the predominant cytosine modifications, cytosine methylation (5mC) and hydroxymethylation (5hmC). Here, we report the first identification of a hydroxymethylcytosine-like (5hmC-like) modification in P. falciparum asexual blood stages using a suite of biochemical methods. In contrast to mammalian cells, we report 5hmC-like levels in the P. falciparum genome of 0.2–0.4%, which are significantly higher than the methylated cytosine (mC) levels of 0.01–0.05%. Immunoprecipitation of hydroxymethylated DNA followed by next generation sequencing (hmeDIP-seq) revealed that 5hmC-like modifications are enriched in gene bodies with minimal dynamic changes during asexual development. Moreover, levels of the 5hmC-like base in gene bodies positively correlated to transcript levels, with more than 2000 genes stably marked with this modification throughout asexual development. Our work highlights the existence of a new predominant cytosine DNA modification pathway in P. falciparum and opens up exciting avenues for gene regulation research and the development of antimalarials.


Parasitology ◽  
2000 ◽  
Vol 121 (2) ◽  
pp. 127-133 ◽  
Author(s):  
T. G. SMITH ◽  
P. LOURENÇO ◽  
R. CARTER ◽  
D. WALLIKER ◽  
L. C. RANFORD-CARTWRIGHT

2005 ◽  
Vol 392 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Keizo Yuasa ◽  
Fumika Mi-Ichi ◽  
Tamaki Kobayashi ◽  
Masaya Yamanouchi ◽  
Jun Kotera ◽  
...  

This is the first report of molecular characterization of a novel cyclic nucleotide PDE (phosphodiesterase), isolated from the human malaria parasite Plasmodium falciparum and designated PfPDE1. PfPDE1 cDNA encodes an 884-amino-acid protein, including six putative transmembrane domains in the N-terminus followed by a catalytic domain. The PfPDE1 gene is a single-copy gene consisting of two exons and a 170 bp intron. PfPDE1 transcripts were abundant in the ring form of the asexual blood stages of the parasite. The C-terminal catalytic domain of PfPDE1, produced in Escherichia coli, specifically hydrolysed cGMP with a Km value of 0.65 μM. Among the PDE inhibitors tested, a PDE5 inhibitor, zaprinast, was the most effective, having an IC50 value of 3.8 μM. The non-specific PDE inhibitors IBMX (3-isobutyl-1-methylxanthine), theophylline and the antimalarial chloroquine had IC50 values of over 100 μM. Membrane fractions prepared from P. falciparum at mixed asexual blood stages showed potent cGMP hydrolytic activity compared with cytosolic fractions. This hydrolytic activity was sensitive to zaprinast with an IC50 value of 4.1 μM, but insensitive to IBMX and theophylline. Furthermore, an in vitro antimalarial activity assay demonstrated that zaprinast inhibited the growth of the asexual blood parasites, with an ED50 value of 35 μM. The impact of cyclic nucleotide signalling on the cellular development of this parasite has previously been discussed. Thus this enzyme is suggested to be a novel potential target for the treatment of the disease malaria.


Sign in / Sign up

Export Citation Format

Share Document