scholarly journals Rostral and caudal BLA engage distinct circuits in the prelimbic and infralimbic PFC

2021 ◽  
Author(s):  
Kasra Manoocheri ◽  
Adam G Carter

Connections from the basolateral amygdala (BLA) to medial prefrontal cortex (PFC) regulate memory and emotion and become disrupted in neuropsychiatric disorders. We hypothesized that the diverse roles attributed to interactions between the BLA and PFC reflect multiple circuits nested within a wider network. To assess these circuits, we first used anatomy to show that the rostral BLA (rBLA) and caudal BLA (cBLA) differentially project to prelimbic (PL) and infralimbic (IL) subregions of the PFC, respectively. We then combined in vivo silicon probe recordings and optogenetics to show that rBLA primarily engages PL, whereas cBLA mainly influences IL. Using ex vivo whole-cell recordings and optogenetics, we then assessed which neuronal subtypes are targeted, showing that rBLA preferentially drives layer 2 (L2) cortico-amygdalar (CA) neurons in PL, whereas cBLA drives layer 5 (L5) pyramidal tract (PT) cells in IL. Lastly, we used soma-tagged optogenetics to explore the local circuits linking superficial and deep layers of PL, showing how rBLA can also impact L5 PT cells. Together, our findings delineate how subregions of the BLA target distinct networks within the PFC to have different influence on prefrontal output.

2021 ◽  
Vol 89 (9) ◽  
pp. S121-S122
Author(s):  
David Kupferschmidt ◽  
Thomas Clarity ◽  
Rachel Mikofsky ◽  
Kirsten Gilchrist ◽  
Maxym Myroshnychenko ◽  
...  

Author(s):  
Mari A. Virtanen ◽  
Claudia Marvine Lacoh ◽  
Hubert Fiumelli ◽  
Markus Kosel ◽  
Shiva Tyagarajan ◽  
...  

Author(s):  
Denise Riquelme ◽  
Ian Silva ◽  
Ashleigh M. Philp ◽  
Juan P. Huidobro-Toro ◽  
Oscar Cerda ◽  
...  

2013 ◽  
Vol 110 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Jonathan Dilgen ◽  
Hugo A. Tejeda ◽  
Patricio O'Donnell

Although interactions between the amygdala and prefrontal cortex (PFC) are critical for emotional guidance of behavior, the manner in which amygdala affects PFC function is not clear. Whereas basolateral amygdala (BLA) output neurons exhibit many characteristics associated with excitatory neurotransmission, BLA stimulation typically inhibits PFC cell firing. This apparent discrepancy could be explained if local PFC inhibitory interneurons were activated by BLA inputs. Here, we used in vivo juxtacellular and intracellular recordings in anesthetized rats to investigate whether BLA inputs evoke feedforward inhibition in the PFC. Juxtacellular recordings revealed that BLA stimulation evoked action potentials in PFC interneurons and silenced most pyramidal neurons. Intracellular recordings from PFC pyramidal neurons showed depolarizing postsynaptic potentials, with multiple components evoked by BLA stimulation. These responses exhibited a relatively negative reversal potential (Erev), suggesting the contribution of a chloride component. Intracellular administration or pressure ejection of the GABA-A antagonist picrotoxin resulted in action-potential firing during the BLA-evoked response, which had a more depolarized Erev. These results suggest that BLA stimulation engages a powerful inhibitory mechanism within the PFC mediated by local circuit interneurons.


Sign in / Sign up

Export Citation Format

Share Document