scholarly journals Predicting biomass of resident kōkopu (Galaxias) populations using local habitat composition

2021 ◽  
Author(s):  
Ben Ryan Jack Crichton ◽  
Michael J. H. Hickford ◽  
Angus A. R. McIntosh ◽  
David R. Schiel

With the global decline of freshwater fishes, quantifying the body size-specific habitat use of vulnerable species is crucial for accurately evaluating population health, identifying the effects of anthropogenic stressors, and directing effective habitat restoration. Populations of New Zealand’s endemic kōkopu species ( Galaxias fasciatus , G. argenteus , and G. postvectis ) have declined substantially over the last century in response to anthropogenic stressors, including habitat loss and fragmentation, invasive species, and over-exploitation. Despite well-understood habitat associations, key within-habitat features driving the reach-scale biomass of small and large kōkopu remain unclear. Here, we investigated whether the total biomass of small (≤ 90 mm) and large (> 90 mm) kōkopu was associated with total pool area, average pool depth, total bank cover, average substrate size, and average forest canopy cover across fifty-seven 50 m reaches. These features were selected because generally pool habitats are productive feeding areas, bank cover and substrate interstices are important refuges, and forest cover provides greater food availability. Because kōkopu are nocturnal, populations were sampled with removal at night using headlamps and hand-nets until reaches were visually depleted. Using Akaike’s information criterion, it was found that increases in large kōkopu biomass were most parsimoniously explained by greater pool area and bank cover, whereas increases in small kōkopu biomass were best explained by low bank cover and greater average forest cover. This study demonstrated the importance of considering the ontogenetic shift in species’ habitat use and provided an effective modelling approach for quantifying the size-specific habitat use of these stream-dwelling fish.

2020 ◽  
Vol 98 (9) ◽  
pp. 591-602
Author(s):  
K.W. Burke ◽  
J.D. Wettlaufer ◽  
D.V. Beresford ◽  
P.R. Martin

The coexistence of closely related species plays an important role in shaping local diversity. However, competition for shared resources can limit the ability of species to coexist. Many species avoid the costs of coexistence by diverging in habitat use, known as habitat partitioning. We examine patterns of habitat use in seven co-occurring species of burying beetles (genus Nicrophorus Fabricius, 1775), testing the hypothesis that Nicrophorus species partition resources by occupying distinct habitats. We surveyed Nicrophorus abundance and 54 habitat characteristics at 100 random sites spanning an environmentally diverse region of southeastern Ontario, Canada. We found that three species occupied distinct habitat types consistent with habitat partitioning. Specifically, Nicrophorus pustulatus Herschel, 1807, Nicrophorus hebes Kirby, 1837, and Nicrophorus marginatus Fabricius, 1801 appear to be specialists for forest canopy, wetlands, and open fields, respectively. In contrast, Nicrophorus orbicollis Say, 1825, Nicrophorus sayi Laporte, 1840, and Nicrophorus tomentosus Weber, 1801 appear to be generalists with wide breadths of habitat use. We were unable to identify the habitat associations of Nicrophorus defodiens Mannerheim, 1846. Our findings are consistent with habitat acting as an important resource axis along which some Nicrophorus species partition; however, divergence along other resource axes (e.g., temporal partitioning) also appears important for Nicrophorus coexistence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitry M. Davydov ◽  
Andrey Boev ◽  
Stas Gorbunov

AbstractSituational or persistent body fluid deficit (i.e., de- or hypo-hydration) is considered a significant health risk factor. Bioimpedance analysis (BIA) has been suggested as an alternative to less reliable subjective and biochemical indicators of hydration status. The present study aimed to compare various BIA models in the prediction of direct measures of body compartments associated with hydration/osmolality. Fish (n = 20) was selected as a biological model for physicochemically measuring proximate body compartments associated with hydration such as water, dissolved proteins, and non-osseous minerals as the references or criterion points. Whole-body and segmental/local impedance measures were used to investigate a pool of BIA models, which were compared by Akaike Information Criterion in their ability to accurately predict the body components. Statistical models showed that ‘volumetric-based’ BIA measures obtained in parallel, such as distance2/Rp, could be the best approach in predicting percent of body moisture, proteins, and minerals in the whole-body schema. However, serially-obtained BIA measures, such as the ratio of the reactance to resistance and the resistance adjusted for distance between electrodes, were the best fitting in predicting the compartments in the segmental schema. Validity of these results should be confirmed on humans before implementation in practice.


2003 ◽  
Vol 79 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Dennis Yemshanov ◽  
Ajith H Perera

We reviewed the published knowledge on forest succession in the North American boreal biome for its applicability in modelling forest cover change over large extents. At broader scales, forest succession can be viewed as forest cover change over time. Quantitative case studies of forest succession in peer-reviewed literature are reliable sources of information about changes in forest canopy composition. We reviewed the following aspects of forest succession in literature: disturbances; pathways of post-disturbance forest cover change; timing of successional steps; probabilities of post-disturbance forest cover change, and effects of geographic location and ecological site conditions on forest cover change. The results from studies in the literature, which were mostly based on sample plot observations, appeared to be sufficient to describe boreal forest cover change as a generalized discrete-state transition process, with the discrete states denoted by tree species dominance. In this paper, we outline an approach for incorporating published knowledge on forest succession into stochastic simulation models of boreal forest cover change in a standardized manner. We found that the lack of details in the literature on long-term forest succession, particularly on the influence of pre-disturbance forest cover composition, may be limiting factors in parameterizing simulation models. We suggest that the simulation models based on published information can provide a good foundation as null models, which can be further calibrated as detailed quantitative information on forest cover change becomes available. Key words: probabilistic model, transition matrix, boreal biome, landscape ecology


2021 ◽  
Vol 13 (14) ◽  
pp. 7539
Author(s):  
Zaw Naing Tun ◽  
Paul Dargusch ◽  
DJ McMoran ◽  
Clive McAlpine ◽  
Genia Hill

Myanmar is one of the most forested countries of mainland Southeast Asia and is a globally important biodiversity hotspot. However, forest cover has declined from 58% in 1990 to 44% in 2015. The aim of this paper was to understand the patterns and drivers of deforestation and forest degradation in Myanmar since 2005, and to identify possible policy interventions for improving Myanmar’s forest management. Remote sensing derived land cover maps of 2005, 2010 and 2015 were accessed from the Forest Department, Myanmar. Post-classification change detection analysis and cross tabulation were completed using spatial analyst and map algebra tools in ArcGIS (10.6) software. The results showed the overall annual rate of forest cover loss was 2.58% between 2005 and 2010, but declined to 0.97% between 2010 and 2015. The change detection analysis showed that deforestation in Myanmar occurred mainly through the degradation of forest canopy associated with logging rather than forest clearing. We propose that strengthening the protected area system in Myanmar, and community participation in forest conservation and management. There needs to be a reduction in centralisation of forestry management by sharing responsibilities with local governments and the movement away from corruption in the timber trading industry through the formation of local-based small and medium enterprises. We also recommend the development of a forest monitoring program using advanced remote sensing and GIS technologies.


2011 ◽  
Vol 41 (3) ◽  
pp. 501-508 ◽  
Author(s):  
Ambroise Lycke ◽  
Louis Imbeau ◽  
Pierre Drapeau

Partial cuts are increasingly proposed to maintain habitats for species negatively affected by clearcutting, even if their benefits on nonpasserine birds and large mammals are still poorly documented. Our main objective was to evaluate effects of commercial thinning (CT) on spruce grouse ( Falcipennis canadensis L.), a game bird of the boreal forest. Because this species is known to be associated with a dense vegetation cover, we hypothesized that habitat use would be lower in treated sites. In spring 2006, we evaluated site occupancy in 94 forest stands (50 CT and 44 uncut stands) in Quebec by visiting each on three occasions during the breeding season (March–May). Additionally, during the molting period (May–July), we used radiotelemetry to monitor habitat use by 19 males. As compared with uncut stands, results show that a lower proportion of CTs were used in spring (39% versus 60%, after accounting for detection). During the molting period, CTs were also used less than expected according to their availability. The significant reduction of lateral and vertical forest cover in CT may explain these results. We conclude that even if CT is perceived beneficial for wildlife, it does not completely fulfill the needs of species associated with dense understory vegetation, such as spruce grouse.


2004 ◽  
Vol 20 (4) ◽  
pp. 439-448 ◽  
Author(s):  
Graeme R. Gillespie ◽  
David Lockie ◽  
Michael P. Scroggie ◽  
Djoko T. Iskandar

The habitat associations of stream-breeding frogs were examined along a series of stream transects on Buton Island in south-east Sulawesi, Indonesia. Of the eight frog species located along streams, four were observed breeding in stream habitats. We examined spatial habitat partitioning among these species. Three of the four species were found to be associated with a non-random selection of the available perch sites. Strong partitioning between species in habitat associations was found; partitioning of the available habitat space was primarily associated with differences in proximity to stream features, and in the height of perch sites. General observations indicated that oviposition sites of most species were associated with the microhabitats in which the adult frogs were found. All four stream-breeding species appear to have synchronous breeding phenologies and the spatial relationships of these species within the habitat space appear to reflect partitioning of calling sites and oviposition sites. The stream-breeding frog community in this region of Sulawesi has much lower species richness and less specialized habitat use compared with other tropical stream-breeding frog communities in the region.


Polar Biology ◽  
2021 ◽  
Vol 44 (2) ◽  
pp. 259-273
Author(s):  
Céline Cunen ◽  
Lars Walløe ◽  
Kenji Konishi ◽  
Nils Lid Hjort

AbstractChanges in the body condition of Antarctic minke whales (Balaenoptera bonaerensis) have been investigated in a number of studies, but remain contested. Here we provide a new analysis of body condition measurements, with particularly careful attention to the statistical model building and to model selection issues. We analyse body condition data for a large number (4704) of minke whales caught between 1987 and 2005. The data consist of five different variables related to body condition (fat weight, blubber thickness and girth) and a number of temporal, spatial and biological covariates. The body condition variables are analysed using linear mixed-effects models, for which we provide sound biological motivation. Further, we conduct model selection with the focused information criterion (FIC), reflecting the fact that we have a clearly specified research question, which leads us to a clear focus parameter of particular interest. We find that there has been a substantial decline in body condition over the study period (the net declines are estimated to 10% for fat weight, 7% for blubber thickness and 3% for the girth). Interestingly, there seems to be some differences in body condition trends between males and females and in different regions of the Antarctic. The decline in body condition could indicate major changes in the Antarctic ecosystem, in particular, increased competition from some larger krill-eating whale species.


2010 ◽  
Vol 8 (2) ◽  
pp. 299-310 ◽  
Author(s):  
Fernando Zaniolo Gibran

Based on a fish survey and preliminary underwater observations, 17 "morphotypes" were identified that characterize the morphological diversity found within 27 nektonic fish species sampled at São Sebastião Channel. Such "morphotypes" were studied using an ecomorphological approach, with the intention to investigate similarities and differences in shape and habits. Underwater field observations were also performed, to verify if the lifestyle of these species, such as vertical occupation of the water column and the habitat use, are in accordance with their distribution in the morphospace. The results, complemented with data from scientific literature on the taxonomy and phylogenies of these species, allowed discussing some of the typical cases of convergent and divergent evolution. Some of the ecomorphological clusters had no phylogenetic support although this is probably due to the environmental conditions in which theirs members have evolved. The body shape and fins positions of a fish clearly influence its ecological performance and habitat use, corroborating the ecomorphological hypothesis on the intimate link between phenotype and ecology.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1542
Author(s):  
Nadezhda V. Genikova ◽  
Viktor N. Mamontov ◽  
Alexander M. Kryshen ◽  
Vladimir A. Kharitonov ◽  
Sergey A. Moshnikov ◽  
...  

Bilberry spruce forests are the most widespread forest type in the European boreal zone. Limiting the clear-cuttings size leads to fragmentation of forest cover and the appearance of large areas of ecotone complexes, composed of forest (F), a transition from forest to the cut-over site under tree canopy (FE), a transition from forest to the cut-over site beyond tree canopy (CE), and the actual clear-cut site (C). Natural regeneration of woody species (spruce, birch, rowan) in the bilberry spruce stand—clear-cut ecotone complex was studied during the first decade after logging. The effects produced by the time since cutting, forest edge aspect, and the ground cover on the emergence and growth of trees and shrubs under forest canopy and openly in the clear-cut were investigated. Estimating the amount and size of different species in the regeneration showed FE and CE width to be 8 m—roughly half the height of first-story trees. Typical forest conditions (F) feature a relatively small amount of regenerating spruce and birch. The most favorable conditions for natural regeneration of spruce in the clear-cut—mature bilberry spruce stand ecotone are at the forest edge in areas of transition both towards the forest and towards the clear-cut (FE and CE). Clear-cut areas farther from the forest edge (C) offer an advantage to regenerating birch, which grows densely and actively in this area.


2018 ◽  
Vol 6 (2) ◽  
pp. 51
Author(s):  
Kristian Gomos Banjarnahor ◽  
Agus Setiawan ◽  
Arief Darmawan

Carbon dioxide (CO2) is a greenhouse gas that could increase earth temperature. Through the photosynthesis process, plants absorb CO2 then convert it into carbohydrates, then sequester it in the body of plants. The purpose of the study is to estimate the changes in the carbon stock at the Arboretum University of Lampung. The methods used were stock difference by counting the carbon changes or difference between carbon stored in 2010 and 2016. While the stand biomass estimation measured by trees general allometric equations with non-destructive sampling. The results showed that the total carbon was 46% of the total biomass. Carbon stock in 2016 were about 226.75 ton/ha, showing an increase of 59.72% or 84.78 ton/ha compared to in 2010’s. The increase was due to additional growth of 804 trees as a result of plantation activity and natural regeneration. Keywords: Arboretum, biomass, carbon, necromass, University of Lampung.


Sign in / Sign up

Export Citation Format

Share Document