scholarly journals Delivery of CAR-T Cells in a Transient Injectable Stimulatory Hydrogel Niche Improves Treatment of Solid Tumors

2021 ◽  
Author(s):  
Abigail K. Grosskopf ◽  
Louai Labanieh ◽  
Dorota D. Klysz ◽  
Gillie Roth ◽  
Peng Xu ◽  
...  

Adoptive cell therapy (ACT) has proven to be highly effective in treating blood cancers such as B cell malignancies, but traditional approaches to ACT are poorly effective in treating the multifarious solid tumors observed clinically. Locoregional cell delivery methods have shown promising results in treating solid tumors compared to standard intravenous delivery methods, but the approaches that have been described to date have several critical drawbacks ranging from complex manufacturing and poor modularity to challenging adminstration. In this work, we develop a simple-to-implement self-assembled and injectable hydrogel material for the controlled co-delivery of CAR-T cells and stimulatory cytokines that improves treatment of solid tumors. We evaluate a range of hydrogel formulations to optimize the creation of a transient inflammatory niche that affords sustained exposure of CAR-T cells and cytokines. This facile approach yields increased CAR-T cell expansion, induces a more tumor-reactive CAR-T phenotype, and improves efficacy in treating solid tumors in mice.

Author(s):  
Christopher DeRenzo ◽  
Giedre Krenciute ◽  
Stephen Gottschalk

Adoptive cell therapy with genetically modified T cells holds the promise to improve outcomes for children with recurrent/refractory solid tumors and has the potential to reduce treatment complications for all patients. Although T cells that express chimeric antigen receptors (CARs) specific for CD19 have had remarkable success for B-cell–derived malignancies, which has led to their approval by the U.S. Food and Drug Administration, CAR T cells have been less effective for solid tumors and brain tumors. Lack of efficacy is most likely multifactorial, but heterogeneous antigen expression; limited migration of T cells to tumor sites; and the immunosuppressive, hostile tumor microenvironment have emerged as major roadblocks that must be addressed. In this review, we summarize the clinical experience with CAR T-cell therapy for pediatric solid tumors, including brain tumors. In addition, we review strategies that have been and are being developed to enhance their antitumor activity.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A132-A132
Author(s):  
Yan Zhang ◽  
Anna Kozlowska ◽  
Jacqueline Fritz ◽  
Yingying Zhao ◽  
Claudia Palomino La Torre ◽  
...  

BackgroundWhile CAR-T have demonstrated potent activity against hematologic tumors, less success has been seen with solid tumors. Here we report generation of TSCM-enriched allogeneic MUC1-C-specific CAR T cells, P-MUC1C-ALLO1, with potential for a broad range of solid tumors. The proliferative capacity and metabolic profile of TSCM CAR-T are well-suited to activity in the solid tumor setting. MUC1 is comprised of an N-terminal subunit (MUC1-N) tethered to a C-terminal subunit (MUC1-C), forming a stable complex on the cell surface. During tumorigenesis, MUC1 becomes both overexpressed and hypo-glycosylated on many carcinomas. Furthermore, MUC1 undergoes proteolytic cleavage in the tumor microenvironment, leaving behind a proteolytic ‘stump’ of MUC1-C that is over-represented in cancer, making it an attractive therapeutic target.MethodsP-MUC1C-ALLO1 is manufactured using the piggyBac® DNA Delivery System for CAR insertion and the Cas-CLOVER™ Gene Editing System to knockout both the TCR and MHC class I proteins. The addition of a selectable marker within the transposon allows for selection of a fully CAR-positive population while any residual TCR-positive cells are removed at the end of production to prevent TCR-mediated GvHD. Lastly, inclusion of a proprietary ‘booster molecule’ in our allogeneic process further improves cell expansion, along with phenotype and function, and enables the production of up to hundreds of patient doses from a single manufacturing run.ResultsSignificant doses of P-MUC1C-ALLO1 products made from multiple healthy donors were achieved and comprised of an exceptionally high-percentage of desirable TSCM cells. Preclinical evaluation of these products showed potent tumor killing and cytokine secretion against MUC1-C-positive breast and ovarian tumor cell lines. P-MUC1C-ALLO1 demonstrates potent cytotoxicity against tumor cells, and minimal killing of normal MUC1-C-positive human primary cells. In a triple negative breast cancer xenograft model, MUC1C CAR-T eliminated established MDA-MB-468 tumor cells, mounted robust T cell expansion in peripheral blood and maintained a favorable TSCM percentage over time. Likewise, in an orthotopic ovarian cancer xenograft model, intraperitoneally administered MUC1C CAR-T eliminated established OVCAR3 cells to levels below the limit of detection. All together, these data demonstrated the efficacy of the MUC1C CAR-T cells and the robustness of the allogeneic platform.ConclusionsP-MUC1C-ALLO1 is an allogeneic TSCM CAR-T therapy that has a potential to treat multiple MUC1-expressing indications. P-MUC1C-ALLO1 displayed specificity for tumor vs. normal cells as well as in vivo efficacy against xenograft models of breast and ovarian cancer. This allogeneic cell therapy is advancing rapidly towards the clinic.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A144-A144
Author(s):  
Zhiyuan Cao ◽  
Chengfei Pu ◽  
Xianyang Jiang ◽  
Xiaogang Shen ◽  
Ruihong Zhu ◽  
...  

BackgroundCAR T therapy has achieved remarkable results in the treatment of hematological tumors such as leukemia, lymphoma, and multiple myeloma. However, there remains challenges in treating solid tumors. These challenges include physical barriers, tumor microenvironment immunosuppression, tumor heterogeneity and target specificity. Especially, due to tumor microenvironmental barriers, CAR T cells are not effectively exposed to tumor antigens and cannot activate co-stimulation signals on CAR molecules, thus conventional CAR T cell therapy has thus far shown weak cell expansion in solid tumor patients, achieved little or no therapeutic responses. Here, we developed CAR T cells based on a novel CoupledCAR® technology to overcome the lack of persistence of solid tumor CAR T cells in vivo.MethodsWe designed a ‘CoupledCAR’ lentivirus vector containing a single-chain variable fragment (scFv) targeting human TSHR. The lentivirus was produced by transfecting HEK-293T cells with ‘CoupledCAR’ lentiviral vectors and viral packaging plasmids. Patient‘s CD3 T cells were cultured in X-VIVO medium containing 125U/mL 1interleukin-2 (IL-2), and transduced with ‘CoupledCAR’ lentivirus at certain MOI. Transduction efficiency and was evaluated at 7 to 9 days after ‘CoupledCAR’ lentivirus transduction, and quality controls for fungi, bacteria, mycoplasma, chlamydia, and endotoxin were performed. After infusion, serial peripheral blood samples were collected, and the expansion and the cytokine release of CART cells were detected by FACS and QPCR. The evaluation of response level for patients were performed at month 1,month 3,and month 6 by PET/CT.ResultsWe used prostatic acid phosphatase (PAP) as an exemplary CAR target for prostate cancer and demonstrated that our CoupledCAR® significantly enhanced the expansion of PAP CAR T cells in vitro and in vivo. Further, we observed that this expansion showed more memory-like phenotypes, and caused little exhaustion of PAP CAR T cells. Also, we find coupled solid tumor CAR T cells have stronger tumor killing ability. We demonstrated this simple expansion to enable the persistence of solid tumor CAR T cells and can be further applied to other kinds of T cell therapy like TCR T and TILs.ConclusionsWe developed a novel platform technology (CoupledCAR®) that allows solid tumor CAR T cells to rapidly expand. This initial CAR T cell expansion enabled enhanced trafficking and infiltration of the tumor tissue whereby further cell expansion occurred and thereby achieved tumor clearance. We have carried clinical trials and obtained early promising clinical data. We will further verify the safety and efficacy of this technology in the treatment of different kinds of solid tumors in the clinic research.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Julien Edeline ◽  
Roch Houot ◽  
Aurélien Marabelle ◽  
Marion Alcantara

AbstractChimeric antigen receptor (CAR)-modified T cells and BiTEs are both immunotherapies which redirect T cell specificity against a tumor-specific antigen through the use of antibody fragments. They demonstrated remarkable efficacy in B cell hematologic malignancies, thus paving the way for their development in solid tumors. Nonetheless, the use of such new drugs to treat solid tumors is not straightforward. So far, the results from early phase clinical trials are not as impressive as expected but many improvements are under way. In this review we present an overview of the clinical development of CAR-T cells and BiTEs targeting the main antigens expressed by solid tumors. We emphasize the most frequent hurdles encountered by either CAR-T cells or BiTEs, or both, and summarize the strategies that have been proposed to overcome these obstacles.


2021 ◽  
Vol 9 (3) ◽  
pp. e001877
Author(s):  
Irfan N Bandey ◽  
Jay R T Adolacion ◽  
Gabrielle Romain ◽  
Melisa Martinez Paniagua ◽  
Xingyue An ◽  
...  

BackgroundAdoptive cell therapy based on the infusion of chimeric antigen receptor (CAR) T cells has shown remarkable efficacy for the treatment of hematologic malignancies. The primary mechanism of action of these infused T cells is the direct killing of tumor cells expressing the cognate antigen. However, understanding why only some T cells are capable of killing, and identifying mechanisms that can improve killing has remained elusive.MethodsTo identify molecular and cellular mechanisms that can improve T-cell killing, we utilized integrated high-throughput single-cell functional profiling by microscopy, followed by robotic retrieval and transcriptional profiling.ResultsWith the aid of mathematical modeling we demonstrate that non-killer CAR T cells comprise a heterogeneous population that arise from failure in each of the discrete steps leading to the killing. Differential transcriptional single-cell profiling of killers and non-killers identified CD137 as an inducible costimulatory molecule upregulated on killer T cells. Our single-cell profiling results directly demonstrate that inducible CD137 is feature of killer (and serial killer) T cells and this marks a different subset compared with the CD107apos (degranulating) subset of CAR T cells. Ligation of the induced CD137 with CD137 ligand (CD137L) leads to younger CD19 CAR T cells with sustained killing and lower exhaustion. We genetically modified CAR T cells to co-express CD137L, in trans, and this lead to a profound improvement in anti-tumor efficacy in leukemia and refractory ovarian cancer models in mice.ConclusionsBroadly, our results illustrate that while non-killer T cells are reflective of population heterogeneity, integrated single-cell profiling can enable identification of mechanisms that can enhance the function/proliferation of killer T cells leading to direct anti-tumor benefit.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 743
Author(s):  
Aleksei Titov ◽  
Ekaterina Zmievskaya ◽  
Irina Ganeeva ◽  
Aygul Valiullina ◽  
Alexey Petukhov ◽  
...  

Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.


Sign in / Sign up

Export Citation Format

Share Document