scholarly journals Engineered High-Affinity ACE2 Peptide Mitigates ARDS and Death Induced by Multiple SARS-CoV-2 Variants

2021 ◽  
Author(s):  
Lianghui Zhang ◽  
Soumajit Dutta ◽  
Shiqin Xiong ◽  
Matthew Chan ◽  
Kui K Chan ◽  
...  

Vaccine hesitancy and continuing emergence of SARS-CoV-2 variants of concern that may escape vaccine-induced immune responses highlight the urgent need for effective COVID-19 therapeutics. Monoclonal antibodies used in the clinic have varying efficacies against distinct SARS-CoV-2 variants; thus, there is considerable interest in engineered ACE2 peptides with augmented binding affinities for SARS-CoV-2 Spike protein. These could have therapeutic benefit against multiple viral variants. Using machine learning and molecular dynamics simulations, we show how three amino acid substitutions in an engineered soluble ACE2 peptide (sACE22.v2.4-IgG1) markedly increase affinity for the SARS-CoV-2 Spike (S) protein. We demonstrate high binding affinity to S protein of the early SARS-CoV-2 WA-1/2020 isolate and also to multiple variants of concern: B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) SARS-CoV-2 variants. In humanized K18-hACE2 mice, prophylactic and therapeutic administration of sACE22.v2.4-IgG1 peptide prevented acute lung vascular endothelial injury and lung edema (essential features of ARDS) and significantly improved survival after infection by SARS-CoV-2 WA-1/2020 as well as P.1 variant of concern. These studies demonstrate for the first time broad efficacy in vivo of an ACE2 decoy peptide against multiple SARS-CoV-2 variants and point to its therapeutic potential.

2021 ◽  
Vol 22 (23) ◽  
pp. 12921
Author(s):  
Irina Giralt ◽  
Gabriel Gallo-Oller ◽  
Natalia Navarro ◽  
Patricia Zarzosa ◽  
Guillem Pons ◽  
...  

The Wnt/β-catenin signaling pathway plays a pivotal role during embryogenesis and its deregulation is a key mechanism in the origin and progression of several tumors. Wnt antagonists have been described as key modulators of Wnt/β-catenin signaling in cancer, with Dickkopf-1 (DKK-1) being the most studied member of the DKK family. Although the therapeutic potential of DKK-1 inhibition has been evaluated in several diseases and malignancies, little is known in pediatric tumors. Only a few works have studied the genetic inhibition and function of DKK-1 in rhabdomyosarcoma. Here, for the first time, we report the analysis of the therapeutic potential of DKK-1 pharmaceutical inhibition in rhabdomyosarcoma, the most common soft tissue sarcoma in children. We performed DKK-1 inhibition via shRNA technology and via the chemical inhibitor WAY-2626211. Its inhibition led to β-catenin activation and the modulation of focal adhesion kinase (FAK), with positive effects on in vitro expression of myogenic markers and a reduction in proliferation and invasion. In addition, WAY-262611 was able to impair survival of tumor cells in vivo. Therefore, DKK-1 could constitute a molecular target, which could lead to novel therapeutic strategies in RMS, especially in those patients with high DKK-1 expression.


2019 ◽  
Vol 20 (24) ◽  
pp. 6123
Author(s):  
Changhao Cui ◽  
Shin Enosawa ◽  
Hitomi Matsunari ◽  
Hiroshi Nagashima ◽  
Akihiro Umezawa

To improve the therapeutic potential of hepatocyte transplantation, the effects of the mitogen-activated protein kinase kinase 4 (MKK4) inhibitor, myricetin (3,3′,4′,5,5′,7-hexahydroxylflavone) were examined using porcine and human hepatocytes in vitro and in vivo. Hepatocytes were cultured, showing the typical morphology of hepatic parenchymal cell under 1–10 µmol/L of myricetin, keeping hepatocyte specific gene expression, and ammonia removal activity. After injecting the hepatocytes into neonatal Severe combined immunodeficiency (SCID) mouse livers, cell colony formation was found at 10–15 weeks after transplantation. The human albumin levels in the sera of engrafted mice were significantly higher in the recipients of myricetin-treated cells than non-treated cells, corresponding to the size of the colonies. In terms of therapeutic efficacy, the injection of myricetin-treated hepatocytes significantly prolonged the survival of ornithine transcarbamylase-deficient SCID mice from 32 days (non-transplant control) to 54 days. Biochemically, the phosphorylation of MKK4 was inhibited in the myricetin-treated hepatocytes. These findings suggest that myricetin has a potentially therapeutic benefit that regulates hepatocyte function and survival, thereby treating liver failure.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3558-3558
Author(s):  
D. Santini ◽  
B. Vincenzi ◽  
F. Battistoni ◽  
S. Galluzzo ◽  
L. Rocci ◽  
...  

3558 Purpose: Recent data have demonstrated in preclinical tumor models an antiangiogenic and antitumor activity of low weekly doses of ZA. As a consequence, the purpose of this study was to confirm these data, evaluating in cancer patients the modifications in angiogenic cytokines levels following repeated weekly low doses of ZA. Experimental Design: 26 consecutive cancer patients with bone metastases treated, for the first time, with four weekly doses of 1 mg of ZA followed by standard doses (4 mg every 28 days) were prospectively evaluated for circulating levels of vascular endothelial growth factor (VEGF) at different time points: just before and after 1, 7, 14, 21, 28, 56 and 84 days following the first disphosphonate infusion. Results: Basal serum VEGF median levels were significantly decreased just after 7 days (-29.7%) (with only one weekly infusion) (P=0.038), This significant decrease of circulating VEGF levels persisted 14(-33.2%), 21 (-39.4%), 28(-31.8%), 56(-33.6%) and 84(-27.9%) days after the first infusion (respectively, P=0.002, P=0.001, P=0.008, P=0.002, P=0.014). Conclusions: This study confirms, for the first time in humans, that weekly low doses of zoledronic acid could have antiangiogenic properties through a significant and long lasting decrease of VEGF serum levels. No significant financial relationships to disclose.


2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Jiahui Chen ◽  
Kaifu Gao ◽  
Rui Wang ◽  
Duc Duy Nguyen ◽  
Guo-Wei Wei

In the global health emergency caused by coronavirus disease 2019 (COVID-19), efficient and specific therapies are urgently needed. Compared with traditional small-molecular drugs, antibody therapies are relatively easy to develop; they are as specific as vaccines in targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); and they have thus attracted much attention in the past few months. This article reviews seven existing antibodies for neutralizing SARS-CoV-2 with 3D structures deposited in the Protein Data Bank (PDB). Five 3D antibody structures associated with the SARS-CoV spike (S) protein are also evaluated for their potential in neutralizing SARS-CoV-2. The interactions of these antibodies with the S protein receptor-binding domain (RBD) are compared with those between angiotensin-converting enzyme 2 and RBD complexes. Due to the orders of magnitude in the discrepancies of experimental binding affinities, we introduce topological data analysis, a variety of network models, and deep learning to analyze the binding strength and therapeutic potential of the 14 antibody–antigen complexes. The current COVID-19 antibody clinical trials, which are not limited to the S protein target, are also reviewed. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 6, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2014 ◽  
Vol 42 (6) ◽  
pp. 1637-1642 ◽  
Author(s):  
Roberto Gianni-Barrera ◽  
Mariateresa Bartolomeo ◽  
Brigitte Vollmar ◽  
Valentin Djonov ◽  
Andrea Banfi

Therapeutic angiogenesis is an attractive strategy to treat patients suffering from ischaemic conditions and vascular endothelial growth factor-A (VEGF) is the master regulator of blood vessel growth. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose localized in the microenvironment around each producing cell in vivo and on the balanced stimulation of platelet-derived growth factor-BB (PDGF-BB) signalling, responsible for pericyte recruitment. At the doses required to induce therapeutic benefit, VEGF causes new vascular growth essentially without sprouting, but rather through the alternative process of intussusception, or vascular splitting. In the present article, we briefly review the therapeutic implications of controlling VEGF dose on one hand and pericyte recruitment on the other, as well as the key features of intussusceptive angiogenesis and its regulation.


2013 ◽  
Vol 25 (2) ◽  
pp. 362 ◽  
Author(s):  
W. Colin Duncan ◽  
Junko Nio-Kobayashi

The ovary is a key tissue in the study of physiological neo-vascularisation in the adult and its study has highlighted important molecules involved in the regulation of angiogenesis in vivo. These include vascular endothelial growth factor, delta-like ligand 4, thrombospondin-1, prokineticin-1 and prostaglandin E2. Targeting these molecular pathways has therapeutic potential and their manipulation has an increasing preclinical and clinical role in the management of the pathological ovary. Targeting angiogenic pathways has utility in the promotion of ovarian angiogenesis to improve tissue and follicle survival and function as well as the prevention and management of ovarian hyperstimulation syndrome. There is a theoretical possibility that targeting angiogenesis may improve the function of the polycystic ovary and a real role for targeting angiogenesis in ovarian cancer.


2021 ◽  
Author(s):  
Nuria Villalba ◽  
Adrian M Sackheim ◽  
Michael A Lawson ◽  
Laurel Haines ◽  
Yen Lin Chen ◽  
...  

Drugs are needed to protect against the neutrophil derived histones responsible for endothelial injury in acute inflammatory conditions such as trauma and sepsis. Heparin and other polyanions can neutralize histones but may cause secondary, deleterious effects such as excessive bleeding. Here, we demonstrate that suramin (a widely available polyanionic drug) completely neutralizes the toxic effects of histones. The sulfate groups on suramin form stable electrostatic interactions with hydrogen bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial cells (Ea.Hy926), histone induced thrombin generation was significantly decreased by suramin. In isolated murine blood vessels, suramin abolished aberrant endothelial cell calcium signals and rescued impaired endothelial dependent vasodilation caused by histones. Suramin significantly decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by infusion of sublethal doses of histones in vivo. Suramin also prevented lung edema, intraalveolar hemorrhage and mortality in mice receiving a lethal dose of histones. Protection of vascular endothelial function from histone-induced damage is a novel mechanism of action for suramin with therapeutic implications for conditions characterized by elevated histone levels.


2021 ◽  
Author(s):  
Jessica Bratt

<p>The spread of antibiotic resistance and the emergence of multi-drug resistant bacteria is a major threat to public health. This study investigated a unique cytosine rich DNA structure, the i-Motif to deliver soluble Ag+ as a novel antimicrobial agent (AgiMs). AgiMs were evaluated in vitro against P. aeruginosa and A. baumannii strains. AgiMs displayed significant antibacterial activity against both P. aeruginosa and A. baumannii (median MIC: 0.875 µM and 0.75 µM, respectively) by rapid, bactericidal and concentration-dependent effect. Low concentrations of AgiMs showed efficacy against PAO1 20-h biofilms, resulting in 57% reduction in biomass (5 x MIC). A single dose of AgiMs extended survival of G. Mellonella larvae, with the therapeutic benefit paralleled in the reduction of internal bacterial load. Synergistic interactions were observed with the combination of AgiMs and tobramycin, a common antibiotic used to treat P. aeruginosa infections; indicating the potential for AgiMs to reinstate the potency of current antibiotics. This silver-based agent might be an alternative to the failing antibiotic regimes for MDR resistant infections. Further in vitro and in vivo studies are warranted to confirm the therapeutic potential. </p>


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Amanda Kennedy ◽  
Peiran Yang ◽  
Cai Read ◽  
Rhoda Kuc ◽  
Janet Maguire ◽  
...  

Hypertensive patients have significantly higher plasma concentrations of the adipokine chemerin compared with healthy controls, and levels of chemerin positively correlate with systolic and diastolic blood pressure. Chemerin activates chemokine-like receptor 1 (CMKLR1 or ChemR23) but it also activates the ‘orphan’ G protein-coupled receptor 1 (GPR1) which has been linked with hypertension. It is therefore crucial to determine whether one or both of these receptors mediate the constrictor actions of chemerin in the vasculature in order to identify a potential new therapeutic target for the treatment of hypertension. Using immunohistochemistry and molecular biology, we localized chemerin to the endothelium, smooth muscle and adventitia, and CMKLR1 and GPR1 to the smooth muscle in human conduit and resistance vessels. Chemerin activated β-arrestin via heterologously expressed receptors GPR1 (pD 2 =9.30±0.05) and CMKLR1 (pD 2 =9.23±0.03) with comparable potency. CCX832, a small molecule antagonist, was fully characterized as highly selective for CMKLR1, with no effect on GPR1 in binding or cell-based functional assays. The C-terminal fragment of chemerin, C9 (chemerin149-157) contracted human saphenous vein (pD 2 =7.30±0.31) and resistance arteries (pD 2 =6.23±0.16), and caused a significant increase in blood pressure in rats in vivo (0.2 μmol, 9.1±1.0 mmHg). These actions were blocked by CCX832, confirming for the first time that a single chemerin receptor, CMKLR1, mediates the constrictor response in humans and in vivo. Our data suggest that chemerin activation of CMKLR1 may contribute to elevated blood pressure; this in combination with the known roles of chemerin in metabolic syndrome and diabetes, could lead to increased risk of cardiovascular disease. This study provides proof of principle that the therapeutic potential of selective CMKLR1 antagonists should be explored.


Author(s):  
Muhammad Bilal Riaz ◽  
Arif-ullah Khan ◽  
Neelam Gul Qazi

Abstract Background Ficus palmata (Fig), are distributed in different parts of the world, and are used in traditional medicine to treat various ailments including inflammation, tumor, epilepsy, jaundice, influenza and bacillary dysentery. The present study aimed to evaluate the antidiarrheal, antisecretary, antispasmodic, antiulcer and anti motility properties of Ficus palmata. Methods In-vivo, in-vitro and in-silico techniques were used to investigate various gastrointestinal effects of Ficus palmata. Antidiarrheal, antisecretary, antispasmodic, antiulcer, anti motility and molecular docking were performed using castor oil induced diarrhea and fluid accumulation, isolated tissue preparations, ethanol-HCl induced ulcer assay, charcoal meal transit time and Auto Doc Vina. Results Ficus palmata crude extract (Fp.Cr) exhibited protection against castor oil-induced diarrhea in mice and dose-dependently inhibited intestinal fluid secretions. Fp.Cr caused relaxation of spontaneous and K+ (80 Mm)-induced contractions in isolated rabbit jejunum preparations. It showed protective effect against gastric ulcers induced by ethanol-hydrochloric acid in rats. Fp.Cr reduced distance travelled by charcoal meal in the gastrointestinal transit model in mice. The plant constituents: psoralenoside and bergapten showed high binding affinities (E-value ≥ − 6.5 Kcal/mol) against histaminergic H1, calmodulin and voltage gated L-type calcium channels, while showed moderate affinities (E-value ≥7 Kcal/mol) against dopaminergic D2, adrenergic α1, muscranic M3, mu-opioid, whereas revealed lower affinities (E-value ≥9.5 Kcal/mol) vs. muscranic M1, histaminergic H2 and H+/K+ ATPase pump. Germanicol acetate and psoralene exhibited weak affinities against aforementioned targets. Conclusion This study reveals that Ficus palmata possesses anti-diarrheal, anti-secretory, anti-spasmodic, anti-motility and anti-ulcer activities. The various constituents reveal different binding affinities against target proteins, which mediate the gastrointestinal functions.


Sign in / Sign up

Export Citation Format

Share Document