scholarly journals Antibacterial T6SS effectors with a VRR-Nuc domain induce target cell death via DNA Double-Strand Breaks

2021 ◽  
Author(s):  
Julia Takuno Hespanhol ◽  
Daniel Enrique Sanchez-Limache ◽  
Gianlucca Goncalves Nicastro ◽  
Liam Mead ◽  
Edgar Enrique Llontop ◽  
...  

The T6SS (Type VI secretion System) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here we characterize the function of the SPI-22 T6SS of S. bongori, showing that it has antibacterial activity. We identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins that contain the DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV2 and TseV3 maintained the ability to bind DNA, but instead cause specific DNA double-strand breaks and induce the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanism regulating the activity of these toxins.

2019 ◽  
Vol 47 (17) ◽  
pp. 9410-9422 ◽  
Author(s):  
Andrea M Kaminski ◽  
Kishore K Chiruvella ◽  
Dale A Ramsden ◽  
Thomas A Kunkel ◽  
Katarzyna Bebenek ◽  
...  

Abstract DNA double-strand breaks (DSBs) resulting from reactive oxygen species generated by exposure to UV and ionizing radiation are characterized by clusters of lesions near break sites. Such complex DSBs are repaired slowly, and their persistence can have severe consequences for human health. We have therefore probed DNA break repair containing a template 8-oxo-7,8-dihydro-2′-guanosine (8OG) by Family X Polymerase μ (Pol μ) in steady-state kinetics and cell-based assays. Pol μ tolerates 8OG-containing template DNA substrates, and the filled products can be subsequently ligated by DNA Ligase IV during Nonhomologous end-joining. Furthermore, Pol μ exhibits a strong preference for mutagenic bypass of 8OG by insertion of adenine. Crystal structures reveal that the template 8OG is accommodated in the Pol μ active site with none of the DNA substrate distortions observed for Family X siblings Pols β or λ. Kinetic characterization of template 8OG bypass indicates that Pol μ inserts adenosine nucleotides with weak sugar selectivity and, given the high cellular concentration of ATP, likely performs its role in repair of complex 8OG-containing DSBs using ribonucleotides.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Samuel J. Black ◽  
Ahmet Y. Ozdemir ◽  
Ekaterina Kashkina ◽  
Tatiana Kent ◽  
Timur Rusanov ◽  
...  

Abstract DNA polymerase θ (Polθ) is a unique polymerase-helicase fusion protein that promotes microhomology-mediated end-joining (MMEJ) of DNA double-strand breaks (DSBs). How full-length human Polθ performs MMEJ at the molecular level remains unknown. Using a biochemical approach, we find that the helicase is essential for Polθ MMEJ of long ssDNA overhangs which model resected DSBs. Remarkably, Polθ MMEJ of ssDNA overhangs requires polymerase-helicase attachment, but not the disordered central domain, and occurs independently of helicase ATPase activity. Using single-particle microscopy and biophysical methods, we find that polymerase-helicase attachment promotes multimeric gel-like Polθ complexes that facilitate DNA accumulation, DNA synapsis, and MMEJ. We further find that the central domain regulates Polθ multimerization and governs its DNA substrate requirements for MMEJ. These studies identify unexpected functions for the helicase and central domain and demonstrate the importance of polymerase-helicase tethering in MMEJ and the structural organization of Polθ.


2020 ◽  
Vol 64 (5) ◽  
pp. 765-777 ◽  
Author(s):  
Yixi Xu ◽  
Dongyi Xu

Abstract Deoxyribonucleic acid (DNA) is at a constant risk of damage from endogenous substances, environmental radiation, and chemical stressors. DNA double-strand breaks (DSBs) pose a significant threat to genomic integrity and cell survival. There are two major pathways for DSB repair: nonhomologous end-joining (NHEJ) and homologous recombination (HR). The extent of DNA end resection, which determines the length of the 3′ single-stranded DNA (ssDNA) overhang, is the primary factor that determines whether repair is carried out via NHEJ or HR. NHEJ, which does not require a 3′ ssDNA tail, occurs throughout the cell cycle. 53BP1 and the cofactors PTIP or RIF1-shieldin protect the broken DNA end, inhibit long-range end resection and thus promote NHEJ. In contrast, HR mainly occurs during the S/G2 phase and requires DNA end processing to create a 3′ tail that can invade a homologous region, ensuring faithful gene repair. BRCA1 and the cofactors CtIP, EXO1, BLM/DNA2, and the MRE11–RAD50–NBS1 (MRN) complex promote DNA end resection and thus HR. DNA resection is influenced by the cell cycle, the chromatin environment, and the complexity of the DNA end break. Herein, we summarize the key factors involved in repair pathway selection for DSBs and discuss recent related publications.


Sign in / Sign up

Export Citation Format

Share Document