scholarly journals Omicron infection enhances neutralizing immunity against the Delta variant

Author(s):  
Khadija Khan ◽  
Farina Karim ◽  
Sandile Cele ◽  
Houriiyah Tegally ◽  
James Emmanuel San ◽  
...  

Omicron has been shown to be highly transmissible and have extensive evasion of neutralizing antibody immunity elicited by vaccination and previous SARS-CoV-2 infection. Omicron infections are rapidly expanding worldwide often in the face of high levels of Delta infections. Here we characterized developing immunity to Omicron and investigated whether neutralizing immunity elicited by Omicron also enhances neutralizing immunity of the Delta variant. We enrolled both previously vaccinated and unvaccinated individuals who were infected with SARS-CoV-2 in the Omicron infection wave in South Africa soon after symptom onset. We then measured their ability to neutralize both Omicron and Delta virus at enrollment versus a median of 14 days after enrollment. Neutralization of Omicron increased 14-fold over this time, showing a developing antibody response to the variant. Importantly, there was an enhancement of Delta virus neutralization, which increased 4.4-fold. The increase in Delta variant neutralization in individuals infected with Omicron may result in decreased ability of Delta to re-infect those individuals. Along with emerging data indicating that Omicron, at this time in the pandemic, is less pathogenic than Delta, such an outcome may have positive implications in terms of decreasing the Covid-19 burden of severe disease.

2020 ◽  
Vol 222 (8) ◽  
pp. 1265-1269 ◽  
Author(s):  
Ger Rijkers ◽  
Jean-Luc Murk ◽  
Bas Wintermans ◽  
Bieke van Looy ◽  
Marcel van den Berge ◽  
...  

Abstract We determined and compared the humoral immune response in patients with severe (hospitalized) and mild (nonhospitalized) coronavirus disease 2019 (COVID-19). Patients with severe disease (n = 38) develop a robust antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including immunoglobulin G and immunoglobulin A antibodies. The geometric mean 50% virus neutralization titer is 1:240. SARS-CoV-2 infection was found in hospital personnel (n = 24), who developed mild symptoms necessitating leave of absence and self-isolation, but not hospitalization; 75% developed antibodies, but with low/absent virus neutralization (60% with titers <1:20). While severe COVID-19 patients develop a strong antibody response, mild SARS-CoV-2 infections induce a modest antibody response. Long-term monitoring will show whether these responses predict protection against future infections.


2020 ◽  
Author(s):  
Natalia Ruetalo ◽  
Ramona Businger ◽  
Karina Althaus ◽  
Simon Fink ◽  
Felix Ruoff ◽  
...  

The majority of infections with SARS-CoV-2 are asymptomatic or mild without the necessity of hospitalization. It is of importance to reveal if these patients develop an antibody response against SARS-CoV-2 and to define which antibodies confer virus neutralization. We conducted a comprehensive serological survey of 49 patients with a mild course of disease and quantified neutralizing antibody responses against a clinical SARS-CoV-2 isolate employing human cells as targets. Four patients (8%), even though symptomatic, did not develop antibodies against SARS-CoV-2 and two other patients (4%) were only positive in one of the six serological assays employed. For the remainder, antibody response against the S-protein correlated with serum neutralization whereas antibodies against the nucleocapsid were poor predictors of virus neutralization. Regarding neutralization, only six patients (12%) could be classified as highly neutralizers. Furthermore, sera from several individuals with fairly high antibody levels had only poor neutralizing activity. In addition, employing a novel serological Western blot system to characterize antibody responses against seasonal coronaviruses, we found that antibodies against the seasonal coronavirus 229E might contribute to SARS-CoV-2 neutralization. Altogether, we show that there is a wide breadth of antibody responses against SARS-CoV-2 in patients that differentially correlate with virus neutralization. This highlights the difficulty to define reliable surrogate markers for immunity against SARS-CoV-2.


Author(s):  
Sandile Cele ◽  
Inbal Gazy ◽  
Laurelle Jackson ◽  
Shi-Hsia Hwa ◽  
Houriiyah Tegally ◽  
...  

AbstractNew SARS-CoV-2 variants with mutations in the spike glycoprotein have arisen independently at multiple locations and may have functional significance. The combination of mutations in the 501Y.V2 variant first detected in South Africa include the N501Y, K417N, and E484K mutations in the receptor binding domain (RBD) as well as mutations in the N-terminal domain (NTD). Here we address whether the 501Y.V2 variant could escape the neutralizing antibody response elicited by natural infection with earlier variants. We were the first to outgrow two variants of 501Y.V2 from South Africa, designated 501Y.V2.HV001 and 501Y.V2.HVdF002. We examined the neutralizing effect of convalescent plasma collected from six adults hospitalized with COVID-19 using a microneutralization assay with live (authentic) virus. Whole genome sequencing of the infecting virus of the plasma donors confirmed the absence of the spike mutations which characterize 501Y.V2. We infected with 501Y.V2.HV001 and 501Y.V2.HVdF002 and compared plasma neutralization to first wave virus which contained the D614G mutation but no RBD or NTD mutations. We observed that neutralization of the 501Y.V2 variants was strongly attenuated, with IC50 6 to 200-fold higher relative to first wave virus. The degree of attenuation varied between participants and included a knockout of neutralization activity. This observation indicates that 501Y.V2 may escape the neutralizing antibody response elicited by prior natural infection. It raises a concern of potential reduced protection against re-infection and by vaccines designed to target the spike protein of earlier SARS-CoV-2 variants.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ai-Hsiang Chou ◽  
Chia-Chyi Liu ◽  
Jui-Yuan Chang ◽  
Shu-Pei Lien ◽  
Meng-Shin Guo ◽  
...  

Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are major causative agents of hand, foot, and mouth diseases (HFMDs), and EV71 is now recognized as an emerging neurotropic virus in Asia. Effective medications and/or prophylactic vaccines against HFMD are not available. The current results from mouse immunogenicity studies using in-house standardized RD cell virus neutralization assays indicate that (1) VP1 peptide (residues 211–225) formulated with Freund’s adjuvant (CFA/IFA) elicited low virus neutralizing antibody response (1/32 titer); (2) recombinant virus-like particles produced from baculovirus formulated with CFA/IFA could elicit good virus neutralization titer (1/160); (3) individual recombinant EV71 antigens (VP1, VP2, and VP3) formulated with CFA/IFA, only VP1 elicited antibody response with 1/128 virus neutralization titer; and (4) the formalin-inactivated EV71 formulated in alum elicited antibodies that cross-neutralized different EV71 genotypes (1/640), but failed to neutralize CVA16. In contrast, rabbits antisera could cross-neutralize strongly against different genotypes of EV71 but weakly against CVA16, with average titers 1/6400 and 1/32, respectively. The VP1 amino acid sequence dissimilarity between CVA16 and EV71 could partially explain why mouse antibodies failed to cross-neutralize CVA16. Therefore, the best formulation for producing cost-effective HFMD vaccine is a combination of formalin-inactivated EV71 and CAV16 virions.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1346
Author(s):  
Jennifer K. DeMarco ◽  
Joshua M. Royal ◽  
William E. Severson ◽  
Jon D. Gabbard ◽  
Steve Hume ◽  
...  

We developed a SARS-CoV-2 vaccine candidate (CoV-RBD121-NP) comprised of a tobacco mosaic virus-like nanoparticle conjugated to the receptor-binding domain of the spike glycoprotein of SARS-CoV-2 fused to a human IgG1 Fc domain. CoV-RBD121-NP elicits strong antibody responses in C57BL/6 mice and is stable for up to 12 months at 2–8 or 22–28 °C. Here, we showed that this vaccine induces a strong neutralizing antibody response in K18-hACE2 mice. Furthermore, we demonstrated that immunization protects mice from virus-associated mortality and symptomatic disease. Our data indicated that a sufficient pre-existing pool of neutralizing antibodies is required to restrict SARS-CoV-2 replication upon exposure and prevent induction of inflammatory mediators associated with severe disease. Finally, we identified a potential role for CXCL5 as a protective cytokine in SARS-CoV-2 infection. Our results suggested that disruption of the CXCL5 and CXCL1/2 axis may be important early components of the inflammatory dysregulation that is characteristic of severe cases of COVID-19.


2021 ◽  
Author(s):  
Yiqi Ruben Luo ◽  
Cassandra Yun ◽  
Indrani Chakraborty ◽  
Alan H.B. Wu ◽  
Kara L. Lynch

AbstractBackgroundThe laboratory-based methods to measure the SARS-CoV-2 humoral response include virus neutralization tests (VNTs) to determine antibody neutralization potency. For ease of use and universal applicability, surrogate virus neutralization tests (sVNTs) based on antibody-mediated blockage of molecular interactions have been proposed.MethodsA surrogate virus neutralization test established on a label-free immunoassay platform (LF-sVNT). The LF-sVNT analyzes the binding ability of RBD to ACE2 after neutralizing RBD with antibodies in serum.ResultsThe LF-sVNT neutralizing antibody titers (IC50) were determined from serum samples (n=246) from COVID-19 patients (n=113), as well as the IgG concentrations and the IgG avidity indices. Although there is variability in the kinetics of the IgG concentrations and neutralizing antibody titers between individuals, there is an initial rise, plateau and then in some cases a gradual decline at later timepoints after 40 days post-symptom onset. The IgG avidity indices, in the same cases, plateau after the initial rise and did not show a decline.ConclusionsThe LF-sVNT can be a valuable tool in clinical laboratories for the assessment of the presence of neutralizing antibodies to COVID-19. This study is the first to provide longitudinal neutralizing antibody titers beyond 200 days post-symptom onset. Despite the decline of IgG concentration and neutralizing antibody titer, IgG avidity index increases, reaches a plateau and then remains constant up to 8 months post-infection. The decline of antibody neutralization potency can be attributed to the reduction in antibody quantity rather than the deterioration of antibody avidity, a measure of antibody quality.SummaryA surrogate virus neutralization test established on a label-free immunoassay platform (LF-sVNT). Using the LF-sVNT and other assays, 246 serum samples from 113 COVID-19 patients were measured. We observed the time course of antibody characteristics beyond 200 days post-symptom onset.


2021 ◽  
Author(s):  
Stefania Dispinseri ◽  
Massimiliano Secchi ◽  
Maria Franca Pirillo ◽  
Monica Tolazzi ◽  
Martina Borghi ◽  
...  

ABSTRACTUnderstanding how antibody to SARS-CoV-2 evolve during infection may provide important insight into therapeutic approaches to prevent fatal COVID-19 illness and vaccines. Here, we profile the antibody response of 162 well-characterized COVID-19 symptomatic patients followed longitudinally for up to eight months from symptom onset. Using two newly developed assays we detect SARS-CoV-2 neutralization and antibodies binding to Spike antigens and nucleoprotein as well as to Spike S2 antigen of seasonal beta-coronaviruses, and to hemagglutinin of the H1N1 flu virus. Presence of neutralizing antibodies withing the first weeks from symptom onset correlates with time to a negative swab result (p=0.002) while lack of neutralization with an increased risk of a fatal disease outcome (HR 2.918, 95%CI 1.321-6.449; p=0.008). Neutralizing antibody titers progressively drop after 5-8 weeks but are still detectable up to 8 months in the majority of recovered patients regardless of age or co-morbidities. IgG to Spike antigens are the best correlate of neutralization. Antibody responses to seasonal coronaviruses are temporary boosted and parallel those to SARS-CoV-2 without dampening the specific response or worsening disease progression. Thus, a compromised immune response to the Spike rather than an enhanced one is a major trait of patients with critical conditions. Patients should be promptly identified and immediately start therapeutic interventions aimed at restoring their immunity.


Author(s):  
Katharine HD Crawford ◽  
Adam S Dingens ◽  
Rachel Eguia ◽  
Caitlin R Wolf ◽  
Naomi Wilcox ◽  
...  

Most individuals infected with SARS-CoV-2 develop neutralizing antibodies that target the viral spike protein. Here we quantify how levels of these antibodies change in the months following SARS-CoV-2 infection by examining longitudinal samples collected between ≈30 and 152 days post-symptom onset from a prospective cohort of 34 recovered individuals with asymptomatic, mild, or moderate-severe disease. Neutralizing antibody titers declined an average of about four-fold from one to four months post-symptom onset. Importantly, our data are consistent with the expected early immune response to viral infection, where an initial peak in antibody levels is followed by a decline to a lower plateau. Additional studies of long-lived B-cells and antibody titers over longer time frames are necessary to determine the durability of immunity to SARS-CoV-2.


2021 ◽  
Author(s):  
Katherine Mackey ◽  
Irina Arkhipova-Jenkins ◽  
Charlotte Armstrong ◽  
Emily Gean ◽  
Johanna Anderson ◽  
...  

 Evidence suggests that the majority of adults develop detectable levels of immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies following infection with SARS-CoV-2 (moderate strength of evidence* [SoE]).  IgM levels peak approximately 20 days after symptom onset or RT-PCR diagnosis and subsequently decline. IgG levels peak approximately 25 days after symptom onset or RT-PCR diagnosis and may remain detectable for at least 120 days (moderate SoE*).  Almost all adults develop neutralizing antibodies in response to SARS-CoV-2 infection, and these antibodies may remain detectable for at least 152 days (low SoE*).  A small percentage of people do not develop antibodies in response to SARS-CoV-2 infection for reasons that are largely unclear but may be related to less severe disease or absence of symptoms.  Antibody prevalence does not appear to vary by age or sex, but older age may be associated with higher antibody levels (low SoE*). Non-White race may be associated with higher antibody prevalence and levels (low SoE*). COVID-19 severity and presence of symptoms may also be associated with higher antibody prevalence or levels (low SoE*). More evidence is needed to draw stronger conclusions regarding how the antibody response varies by patient characteristics and disease factors.  Studies to date have not established the relationship between the development of antibodies after RT-PCR-diagnosed SARS-CoV-2 infection and the risk of reinfection. Studies based on index serologic testing suggest that the presence of antibodies is associated with a lower risk of a subsequent positive SARS-CoV-2 RT-PCR test.


2021 ◽  
Author(s):  
Thandeka Moyo-Gwete ◽  
Mashudu Madzivhandila ◽  
Zanele Makhado ◽  
Frances Ayres ◽  
Donald Mhlanga ◽  
...  

AbstractNeutralization escape by SARS-CoV-2 variants, as has been observed in the 501Y.V2 (B.1.351) variant, has impacted the efficacy of first generation COVID-19 vaccines. Here, the antibody response to the 501Y.V2 variant was examined in a cohort of patients hospitalized with COVID-19 in early 2021 - when over 90% of infections in South Africa were attributed to 501Y.V2. Robust binding and neutralizing antibody titers to the 501Y.V2 variant were detected and these binding antibodies showed high levels of cross-reactivity for the original variant, from the first wave. In contrast to an earlier study where sera from individuals infected with the original variant showed dramatically reduced potency against 501Y.V2, sera from 501Y.V2-infected patients maintained good cross-reactivity against viruses from the first wave. Furthermore, sera from 501Y.V2-infected patients also neutralized the 501Y.V3 (P.1) variant first described in Brazil, and now circulating globally. Collectively these data suggest that the antibody response in patients infected with 501Y.V2 has a broad specificity and that vaccines designed with the 501Y.V2 sequence may elicit more cross-reactive responses.


Sign in / Sign up

Export Citation Format

Share Document