scholarly journals ZC3HC1 is a structural element of the nuclear basket effecting interlinkage of TPR polypeptides

2022 ◽  
Author(s):  
Philip Gunkel ◽  
Volker C Cordes

The nuclear basket (NB), anchored to the nuclear pore complex (NPC), is commonly thought of as built solely of protein TPR polypeptides, the latter thus regarded as the NB's only scaffold-forming components. In the current study, we report ZC3HC1 as a second building element of the NB. Recently described as an NB-appended protein omnipresent in vertebrates, we now show that ZC3HC1, both in vivo and in vitro, enables in a step-wise fashion the recruitment of TPR subpopulations to the NB and their linkage to already NPC-anchored TPR polypeptides. We further demonstrate that the degron-mediated rapid elimination of ZC3HC1 results in the prompt detachment of the ZC3HC1-appended TPR polypeptides from the NB and their release back into the nucleoplasm again, underscoring the role of ZC3HC1 as a natural structural element of the NB. Finally, we show that ZC3HC1 can keep TPR polypeptides positioned even at sites remote from the NB, in line with ZC3HC1 functioning as a protein connecting TPR polypeptides. 

2018 ◽  
Author(s):  
Hide A. Konishi ◽  
Shige H. Yoshimura

SummaryIn this study, we examined how channel-forming subunits of the nuclear pore complex (NPC) are assembled into a selective channel within a highly structured scaffold ring during post-mitotic assembly. We focused on non-structured domains of the scaffold Nups and performed in vitro self-assembled particle assays with those derived from channel-forming FG-Nups. We found that non-structured domains of ELYS and Nup35N interacted with channel-forming FG-Nups to form a self-assembled particle. Sequential addition of FG-Nups into the scaffold particle revealed that ELYS, which initiates post-mitotic NPC reassembly, interacts with early assembling FG-Nups (Nups98 and 153) but not middle stage-assembling FG-Nups (Nups58 and 62). Nup35, which assembles between the early and middle stages, facilitated the assembly of Nup62 into the early assembling Nups both in vitro and in vivo. These results demonstrate that ELYS and Nup35 have a role of facilitator in the ordered assembly of channel-forming FG-Nups during mitosis.


1988 ◽  
Vol 107 (4) ◽  
pp. 1289-1297 ◽  
Author(s):  
C Featherstone ◽  
M K Darby ◽  
L Gerace

A monoclonal antibody that reacts with proteins in the nuclear pore complex of rat liver (Snow, C. M., A. Senior, and L. Gerace. 1987. J. Cell Biol. 104:1143-1156) has been shown to cross react with similar components in Xenopus oocytes, as determined by immunofluorescence microscopy and immunoblotting. We have microinjected the antibody into oocytes to study the possible role of these polypeptides in nucleocytoplasmic transport. The antibody inhibits import of a large nuclear protein, nucleoplasmin, in a time- and concentration-dependent manner. It also inhibits export of 5S ribosomal RNA and mature tRNA, but has no effect on transcription or intranuclear tRNA processing. The antibody does not affect the rate of diffusion into the nucleus of two small proteins, myoglobin and ovalbumin, indicating that antibody binding does not result in occlusion of the channel for diffusion. This suggests that inhibition of protein and RNA transport occurs by binding of the antibody at or near components of the pore that participate in mediated transport.


1993 ◽  
Vol 123 (6) ◽  
pp. 1345-1354 ◽  
Author(s):  
N Wilken ◽  
U Kossner ◽  
J L Senécal ◽  
U Scheer ◽  
M C Dabauvalle

Using an autoimmune serum from a patient with overlap connective tissue disease we have identified by biochemical and immunocytochemical approaches an evolutionarily conserved nuclear pore complex (NPC) protein with an estimated molecular mass of 180 kD and an isoelectric point of approximately 6.2 which we have designated as nup180. Extraction of isolated nuclear envelopes with 2 M urea and chromatography of the solubilized proteins on WGA-Sepharose demonstrated that nup180 is a peripheral membrane protein and does not react with WGA. Affinity-purified antibodies yielded a punctate immunofluorescent pattern of the nuclear surface of mammalian cells and stained brightly the nuclear envelope of cryosectioned Xenopus oocytes. Nuclei reconstituted in vitro in Xenopus egg extract were also stained in the characteristic punctate fashion. Immunogold EM localized nup180 exclusively to the cytoplasmic ring of NPCs and short fibers emanating therefrom into the cytoplasm. Antibodies to nup180 did not inhibit nuclear protein transport in vivo nor in vitro. Despite the apparent lack of involvement in NPC assembly or nucleocytoplasmic transport processes, the conservation of nup180 across species and its exclusive association with the NPC cytoplasmic ring suggests an important, though currently undefined function for this novel NPC protein.


2001 ◽  
Vol 114 (20) ◽  
pp. 3607-3618 ◽  
Author(s):  
Elena Kiseleva ◽  
Sandra Rutherford ◽  
Laura M. Cotter ◽  
Terence D. Allen ◽  
Martin W. Goldberg

The mechanisms of nuclear pore complex (NPC) assembly and disassembly during mitosis in vivo are not well defined. To address this and to identify the steps of the NPC disassembly and assembly, we investigated Drosophila embryo nuclear structure at the syncytial stage of early development using field emission scanning electron microscopy (FESEM), a high resolution surface imaging technique, and transmission electron microscopy. Nuclear division in syncytial embryos is characterized by semi-closed mitosis, during which the nuclear membranes are ruptured only at the polar regions and are arranged into an inner double membrane surrounded by an additional ‘spindle envelope’. FESEM analysis of the steps of this process as viewed on the surface of the dividing nucleus confirm our previous in vitro model for the assembly of the NPCs via a series of structural intermediates, showing for the first time a temporal progression from one intermediate to the next. Nascent NPCs initially appear to form at the site of fusion between the mitotic nuclear envelope and the overlying spindle membrane. A model for NPC disassembly is offered that starts with the release of the central transporter and the removal of the cytoplasmic ring subunits before the star ring.


1998 ◽  
Vol 330 (1) ◽  
pp. 421-427 ◽  
Author(s):  
Ursula STOCHAJ ◽  
Mehrdad HÉJAZI ◽  
Pierre BELHUMEUR

The small GTPase Gsp1p of Saccharomyces cerevisiae and its homologue Ran play essential roles in several nuclear processes, such as cell-cycle progression, nuclear organization and nucleocytoplasmic traffic of RNA and proteins. Gsp1p/Ran is an abundant nuclear protein that interacts with different cytoplasmic and nuclear factors. Several of the previously identified Ran-binding proteins located at the nuclear-pore complex carry a specific Ran-binding domain. So far, direct interactions between the GTPase and other proteins have been mostly characterized in higher eukaryotes. Here we report that the yeast protein Gsp1p can directly bind to the nucleoporin Nsp1p in vitro. Nsp1p does not contain a Ran-binding domain and therefore represents a distinct type of nucleoporin that associates with Gsp1p. We demonstrate that the middle domain of Nsp1p is sufficient to mediate this interaction. Importantly, we show that a conserved cluster of positively charged amino acid residues of Gsp1p located at positions 142-144 is essential for the binding reaction. Thus we have identified Nsp1p as a new candidate protein located at the nuclear pore complex of the yeast S. cerevisiae that interacts directly with Gsp1p. We further demonstrate that both Gsp1p and Nsp1p are components of larger protein complexes in vivo, supporting the idea that the association between both proteins takes place in growing cells.


Author(s):  
G. G. Maul

The chromatin of eukaryotic cells is separated from the cytoplasm by a double membrane. One obvious structural specialization of the nuclear membrane is the presence of pores which have been implicated to facilitate the selective nucleocytoplasmic exchange of a variety of large molecules. Thus, the function of nuclear pores has mainly been regarded to be a passive one. Non-membranous diaphragms, radiating fibers, central rings, and other pore-associated structures were thought to play a role in the selective filter function of the nuclear pore complex. Evidence will be presented that suggests that the nuclear pore is a dynamic structure which is non-randomly distributed and can be formed during interphase, and that a close relationship exists between chromatin and the membranous part of the nuclear pore complex.Octagonality of the nuclear pore complex has been confirmed by a variety of techniques. Using the freeze-etching technique, it was possible to show that the membranous part of the pore complex has an eight-sided outline in human melanoma cells in vitro. Fibers which traverse the pore proper at its corners are continuous and indistinguishable from chromatin at the nucleoplasmic side, as seen in conventionally fixed and sectioned material. Chromatin can be seen in octagonal outline if serial sections are analyzed which are parallel but do not include nuclear membranes (Fig. 1). It is concluded that the shape of the pore rim is due to fibrous material traversing the pore, and may not have any functional significance. In many pores one can recognize a central ring with eight fibers radiating to the corners of the pore rim. Such a structural arrangement is also found to connect eight ribosomes at the nuclear membrane.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
HM Lee ◽  
TG Ahn ◽  
CW Kim ◽  
HJ An
Keyword(s):  

1987 ◽  
Vol 26 (01) ◽  
pp. 1-6 ◽  
Author(s):  
S. Selvaraj ◽  
M. R. Suresh ◽  
G. McLean ◽  
D. Willans ◽  
C. Turner ◽  
...  

The role of glycoconjugates in tumor cell differentiation has been well documented. We have examined the expression of the two anomers of the Thomsen-Friedenreich antigen on the surface of human, canine and murine tumor cell membranes both in vitro and in vivo. This has been accomplished through the synthesis of the disaccharide terminal residues in both a and ß configuration. Both entities were used to generate murine monoclonal antibodies which recognized the carbohydrate determinants. The determination of fine specificities of these antibodies was effected by means of cellular uptake, immunohistopathology and immunoscintigraphy. Examination of pathological specimens of human and canine tumor tissue indicated that the expressed antigen was in the β configuration. More than 89% of all human carcinomas tested expressed the antigen in the above anomeric form. The combination of synthetic antigens and monoclonal antibodies raised specifically against them provide us with invaluable tools for the study of tumor marker expression in humans and their respective animal tumor models.


Sign in / Sign up

Export Citation Format

Share Document