scholarly journals Convolution Neural Networks for Point-of-Care Diagnostics of Bacterial Infections in Blood

Author(s):  
Omkar Hegde ◽  
Ritika Chatterjee ◽  
Durbar Roy ◽  
Vivek Jaiswal ◽  
Dipshikha Chakravortty ◽  
...  

ABSTRACTA droplet of blood, when evaporated on a surface, leaves dried residue—the fractal patterns formed on the dried residues can act as markers for infection present in the blood. Exploiting the unique patterns found in the residues of a naturally dried droplet of blood, we propose a Point-of-Care (POC) diagnostic tool for detecting broad-spectrum of bacterial infections (such as Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, Salmonella Typhi) in blood. The diagnosis process we propose is straightforward and can be performed with the following steps: A droplet of blood (healthy or infected) of volume range 0.5 to 2 μl is allowed to dry on a clean glass surface and is imaged using a conventional optical microscope. A computer algorithm based on the framework of convolution neural network (CNN) is used to classify the captured images of dried blood droplets according to the bacterial infection. In total, our multiclass model reports an accuracy of 92% for detecting six bacterial species infections in the blood (with control being the uninfected or healthy blood). The high accuracy of detecting bacteria in the blood reported in this article is commensurate with the standard bacteriological tests. Thus, this article presents a proof-of-concept of a potential futuristic tool for a rapid and low-cost diagnosis of bacterial infection in the blood.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yehe Liu ◽  
Andrew M. Rollins ◽  
Richard M. Levenson ◽  
Farzad Fereidouni ◽  
Michael W. Jenkins

AbstractSmartphone microscopes can be useful tools for a broad range of imaging applications. This manuscript demonstrates the first practical implementation of Microscopy with Ultraviolet Surface Excitation (MUSE) in a compact smartphone microscope called Pocket MUSE, resulting in a remarkably effective design. Fabricated with parts from consumer electronics that are readily available at low cost, the small optical module attaches directly over the rear lens in a smartphone. It enables high-quality multichannel fluorescence microscopy with submicron resolution over a 10× equivalent field of view. In addition to the novel optical configuration, Pocket MUSE is compatible with a series of simple, portable, and user-friendly sample preparation strategies that can be directly implemented for various microscopy applications for point-of-care diagnostics, at-home health monitoring, plant biology, STEM education, environmental studies, etc.


2021 ◽  
Author(s):  
Rahat Nawaz ◽  
Sayed Tayyab Raza Naqvi ◽  
Batool Fatima ◽  
Nazia Zulfiqar ◽  
Muhammad Umer Farooq ◽  
...  

Abstract Nonwoven cotton fabric has been fabricated and designed for antibacterial applications using low cost and ecofriendly precursors. The treatment of fabric with alkali leads to formation of active sites. The surfaces were dip coated with silver nanaoparticles and chitosan. The surface was chlorinated in next step to transform amide (N-H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/ sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus lutes, Staphylococcus aurea, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without destroying and affecting fabric nature. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.


2020 ◽  
Vol 150 ◽  
pp. 111956
Author(s):  
Andrew Lakey ◽  
Zulfiqur Ali ◽  
Simon M. Scott ◽  
Syrine Chebil ◽  
Hafsa Korri-Youssoufi ◽  
...  

2010 ◽  
Vol 39 (4) ◽  
pp. 1313-1327 ◽  
Author(s):  
Himanshu Sharma ◽  
Diep Nguyen ◽  
Aaron Chen ◽  
Valerie Lew ◽  
Michelle Khine

Sign in / Sign up

Export Citation Format

Share Document