scholarly journals The generation of a Nutm1 knock-in reporter mouse line for imaging post-meiotic spermatogenesis

2022 ◽  
Author(s):  
Maxwell Claef Hakun ◽  
Janet Rossant ◽  
Bin Gu

Spermiogenesis, the post-meiotic stage of sperm development, is critical for normal male fertility. Many genetic defects and environmental assaults that affect spermiogenesis have been shown to be associated with male infertility. In addition, this later stage of spermatogenesis has been proposed to be an ideal target for male contraceptive development. The mouse is a widely used model for studying the mechanisms of spermatogenesis and spermiogenesis. However, due to the complexity and the asynchronous nature of spermatogenesis in adult testis, it is challenging to study molecular processes restricted to this specific developmental stage. It is also challenging to monitor the spermiogenesic activity in live mice, which is critical for screening for fertility-modulating interventions such as contraceptives. Here we reported the development of a Nutm1-T2A- luciferase 2(Luc2)-tandem Tomato(TdTomato) knock-in reporter mouse model that specifically labels post-meiotic spermatids. Homozygous reporter mice are healthy and fully fertile, demonstrating no interference with the normal functions of the Nutm1 gene by the reporter. We demonstrated the visualization of post-meiotic spermatids by fluorescent imaging of the TdTomato reporter in both live and fixed testis tissues. We also demonstrated bioluminescence imaging of Nutm1 expressing cells in live mice. The Nutm1-T2A-Luc2TdTomato reporter mouse can serve as a valuable tool for studying spermiogenesis.

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Xiaochun Chi ◽  
Weiwei Luo ◽  
Jiagui Song ◽  
Bing Li ◽  
Tiantian Su ◽  
...  

AbstractKindlin-2 is known to play important roles in the development of mesoderm-derived tissues including myocardium, smooth muscle, cartilage and blood vessels. However, nothing is known for the role of Kindlin-2 in mesoderm-derived reproductive organs. Here, we report that loss of Kindlin-2 in Sertoli cells caused severe testis hypoplasia, abnormal germ cell development and complete infertility in male mice. Functionally, loss of Kindlin-2 inhibits proliferation, increases apoptosis, impairs phagocytosis in Sertoli cells and destroyed the integration of blood-testis barrier structure in testes. Mechanistically, Kindlin-2 interacts with LATS1 and YAP, the key components of Hippo pathway. Kindlin-2 impedes LATS1 interaction with YAP, and depletion of Kindlin-2 enhances LATS1 interaction with YAP, increases YAP phosphorylation and decreases its nuclear translocation. For clinical relevance, lower Kindlin-2 expression and decreased nucleus localization of YAP was found in SCOS patients. Collectively, we demonstrated that Kindlin-2 in Sertoli cells is essential for sperm development and male reproduction.


1983 ◽  
Vol 36 (4) ◽  
pp. 333 ◽  
Author(s):  
A RJones

Non-steroidal chemicals that affect male fertility have been known for over 25 years but only one compound, oc-chlorohydrin, possesses most of the attributes of an ideal male contraceptive. In the male rat, for example, continuous daily oral administration of low doses produces an almost immediate and continuous antifertility response that ceases when treatment is withdrawn. Such a dose regime does not interfere with libido, is apparently not toxic and the action is specific towards mature sperm. Furthermore, the action of the compound is species-specific: it is effective in the rat, ram, boar, guinea pig, hamster,rhesus monkey and upon ejaculated human sperm but it is ineffective in the mouse and the rabbit. High doses of oc-chlorohydrin can be neurotoxic, nephrotoxic and, in rats, lead to prolonged or permanent infertility. However, the antifertility response and the toxicity of racemic oc-chlorohydrin may be due, respectively, to the separate enantiomers. No other antifertility chemical has been investigated to such an extent as oc-chlorohydrin; this article reviews the progress that has been achieved with oc-chlorohydrin during the past six years.


2005 ◽  
Vol 17 (9) ◽  
pp. 99
Author(s):  
L. M. Cotton ◽  
G. M. Gibbs ◽  
D. M. De Kretser ◽  
M. K. O'Bryan

Male infertility is often a result of irregular sperm development/function. The identification of snt-2 (Suc-1 associated Neurotrophic Factor Target 2) and Fgfr-1 to the sperm tail, lead to the hypothesis that Fgf signalling through snt-2 is involved in sperm tail development/function. To test this hypothesis, transgenic mice carrying a dominant-negative variant of Fgfr-1, driven by the protamine 1 promoter (haploid specific) were created. Breeding experiments confirmed male fertility; however, one line was significantly sub-fertile and demonstrated a significantly reduced daily sperm production (DSP, 30%↓). Transgene expression levels were up to 70 times above native mRNA levels in wt mice; however, there was a concurrent upregulation of the native receptor in transgenic mice, resulting in only a 6× over-expression in transgenic:native mRNA. To increase transgene expression, independent lines were crossed (double heterozygous, DH). DH transgene expression levels were up to 120 times above the native mRNA in wild type mice, resulting in a 20× over-expression in transgenic:native mRNA. Breeding experiments showed males from 1 cross were significantly subfertile with DSPs further reduced (41%↓). Collectively this data shows Fgfr-1 signalling is required for quantitatively normal spermiogenesis. Given the millions of sperm that mice produce, a 40%↓ in DSP is unlikely to be responsible for the sub-fertility observed i.e. 2 v. 9 pups/litter. Therefore, a disruption of Fgfr-1 signalling may also induce a post-testicular phenotype. Western blot analysis, using tyrosine phosphorylation as a surrogate marker of sperm capacitation, showed transgenic mice had a significantly attenuated ability to initiate capacitation. As capacitation is an absolute requirement for fertilisation, the absence of capacitating capability is probably the major contributor to the sub-fertility seen in the transgenic mice. This research demonstrates for the first time that the Fgfr-1 signalling cascade is one of several pathways associated with sperm development and function.


2019 ◽  
Vol 20 (21) ◽  
pp. 5379 ◽  
Author(s):  
Sheba Jarvis ◽  
Catherine Williamson ◽  
Charlotte L Bevan

Liver X receptors (LXRs) are ligand-dependent transcription factors acting as ‘cholesterol sensors’ to regulate lipid homeostasis in cells. The two isoforms, LXRα (NR1H3) and LXRβ (NR1H2), are differentially expressed, with the former expressed predominantly in metabolically active tissues and the latter more ubiquitously. Both are activated by oxidised cholesterol metabolites, endogenously produced oxysterols. LXRs have important roles in lipid metabolism and inflammation, plus a number of newly emerging roles. They are implicated in regulating lipid balance in normal male reproductive function and may provide a link between male infertility and lipid disorders and/or obesity. Studies from Lxr knockout mouse models provide compelling evidence to support this. More recently published data suggest distinct and overlapping roles of the LXR isoforms in the testis and recent evidence of a role for LXRs in human male fertility. This review summarises the current literature and explores the likely link between LXR, lipid metabolism and male fertility as part of a special issue on Liver X receptors in International Journal of Molecular Sciences.


2011 ◽  
Vol 497 (2) ◽  
pp. 134-138 ◽  
Author(s):  
Luis Lopez de Heredia ◽  
Archana Gengatharan ◽  
Julie Foster ◽  
Stephen Mather ◽  
Charalambos Magoulas

Development ◽  
2021 ◽  
Author(s):  
Fang Yang ◽  
Maria Gracia Gervasi ◽  
N. Adrian Leu ◽  
Gerardo Orta ◽  
Darya A. Tourzani ◽  
...  

The CatSper cation channel is essential for sperm capacitation and male fertility. The multi-subunit CatSper complexes form highly organized calcium signaling nanodomains on flagellar membranes. Here we report identification of an uncharacterized protein C2CD6 as a novel subunit of the CatSper complex. C2CD6 contains a calcium-dependent membrane targeting C2 domain. C2CD6 associates with the CatSper calcium-selective core forming subunits. Deficiency of C2CD6 depletes the CatSper nanodomains from the flagellum and results in male sterility. C2CD6-deficient sperm are defective in hyperactivation and fail to fertilize oocytes both in vitro and in vivo. CatSper currents are present but at a significantly lower level in C2CD6-deficient sperm. Transient treatments with either Ca2+ ionophore, starvation, or a combination of both restore the fertilization capacity of C2CD6-deficient sperm. C2CD6 interacts with EFCAB9, a pH-dependent calcium sensor in the CatSper complex. We postulate that C2CD6 facilitates incorporation of the CatSper complex into the flagellar plasma membrane and may function as a calcium sensor. The identification of C2CD6 may enable the long-sought reconstitution of the CatSper ion channel complex in a heterologous system for male contraceptive development.


Reproduction ◽  
2020 ◽  
Author(s):  
Shiyang Zhang ◽  
Yunhao Liu ◽  
Qian Huang ◽  
Shuo Yuan ◽  
Hong Liu ◽  
...  

Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. IFT172 is a component of the IFT complex. Global disruption of mouse Ift172 gene caused typical phenotypes of ciliopathy. Mouse Ift172 gene appears to translate two major proteins; the full-length protein is highly expressed in the tissues enriched in cilia, and the smaller 130 kDa one is only abundant in the testis. In male germ cells, IFT172 is highly expressed in the manchette of elongating spermatids. A germ cell-specific Ift172 mutant mice were generated, and the mutant mice did not show gross abnormalities. There was no difference in testis/body weight between the control and mutant mice, but more than half of the adult homozygous mutant males were infertile and associated with abnormally developed germ cells in the spermiogenesis phase. The cauda epididymides in mutant mice contained less developed sperm that showed significantly reduced motility, and these sperm had multiple defects in ultrastructure and bent tails. In the mutant mice, testicular expression levels of some IFT components, including IFT20, IFT27, IFT74, IFT81 and IFT140, and a central apparatus protein SPAG16L were not changed. However, expression levels of ODF2, a component of the outer dense fiber, and AKAP4, a component of fibrous sheath, and two IFT components IFT25 and IFT57 were dramatically reduced. Our findings demonstrate that IFT172 is essential for normal male fertility and spermiogenesis in mice, probably by modulating specific IFT proteins and transporting/assembling unique accessory structural proteins into spermatozoa.


1994 ◽  
Vol 14 (2) ◽  
pp. 1302-1307
Author(s):  
I Reveillaud ◽  
J Phillips ◽  
B Duyf ◽  
A Hilliker ◽  
A Kongpachith ◽  
...  

Null mutants for Cu/Zn superoxide dismutase (CuZnSOD) in Drosophila melanogaster are male sterile, have a greatly reduced adult life span, and are hypersensitive to paraquat. We have introduced a synthetic bovine CuZnSOD transgene under the transcriptional control of the D. melanogaster 5C actin promoter into a CuZnSOD-null mutant of D. melanogaster. This was carried out by P-element-mediated transformation of the Drosophila-bovine CuZnSOD transgene into a CuZnSOD+ recipient strain followed by genetic crossing of the transgene into a strain carrying the CuZnSOD-null mutation, cSODn108. The resulting transformants express bovine CuZnSOD exclusively to about 30% of normal Drosophila CuZnSOD levels. Expression of the Drosophila-bovine CuZnSOD transgene in the CuZnSOD-null mutant rescues male fertility and resistance to paraquat to apparently normal levels. However, adult life span is restored to only 30% of normal, and resistance to hyperoxia is 90% of that found in control flies. This striking differential restoration of pleiotropic phenotypes could be the result of a threshhold of CuZnSOD expression necessary for normal male fertility and resistance to the toxicity of paraquat or hyperoxia which is lower than the threshold required to sustain a normal adult life span. Alternatively, the differential rescue of fertility, resistance to active oxygen, and life span might indicate different cell-specific transcriptional requirements for these functions which are normally provided by the control elements of the native CuZnSOD gene but are only partly compensated for by the transcriptional control elements of the actin 5C promoter.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Maulik R Patel ◽  
Ganesh K Miriyala ◽  
Aimee J Littleton ◽  
Heiko Yang ◽  
Kien Trinh ◽  
...  

Due to their strict maternal inheritance in most animals and plants, mitochondrial genomes are predicted to accumulate mutations that are beneficial or neutral in females but harmful in males. Although a few male-harming mtDNA mutations have been identified, consistent with this ‘Mother’s Curse’, their effect on females has been largely unexplored. Here, we identify COIIG177S, a mtDNA hypomorph of cytochrome oxidase II, which specifically impairs male fertility due to defects in sperm development and function without impairing other male or female functions. COIIG177S represents one of the clearest examples of a ‘male-harming’ mtDNA mutation in animals and suggest that the hypomorphic mtDNA mutations like COIIG177S might specifically impair male gametogenesis. Intriguingly, some D. melanogaster nuclear genetic backgrounds can fully rescue COIIG177S -associated sterility, consistent with previously proposed models that nuclear genomes can regulate the phenotypic manifestation of mtDNA mutations.


Sign in / Sign up

Export Citation Format

Share Document