scholarly journals Isolated Grauer's gorilla populations differ in diet and gut microbiome

2022 ◽  
Author(s):  
Alice Michel ◽  
Riana Minocher ◽  
Peter Niehoff ◽  
Yuhong Li ◽  
Kevin Nota ◽  
...  

Conservation efforts tend to focus on populations that are genetically differentiated without paying attention to their ecological differentiation. However, isolated populations may be ecologically unique, an important aspect for the design of appropriate conservation measures for endangered species. Here we investigate the interplay between diet and gut microbiome in several geographically isolated and genetically differentiated populations of the critically endangered Grauer's gorilla. We find that dietary and gut microbial profiles are population-specific, likely due to geographic isolation and environmental differences. In addition, social groups within each population also differed in diet and, to a lesser extent, in gut microbial composition and diversity. Individuals at low elevation consumed a larger variety of plant taxa than those at high elevation, consistent with the notion that dietary choice is constrained by food availability that changes with elevation. Despite no detectable correlation between the diet and gut microbiome in richness or evenness, dietary and gut microbial composition covaried significantly. As we did not find evidence for an effect of genetic relatedness on the composition of the gut microbiome of Grauer's gorillas, this pattern is likely a result of long-term social, ecological, and geographic factors acting on both diet and microbiome. These results reveal that isolated and genetically distinct populations of Grauer's gorillas are also ecologically distinct, highlighting the need to dedicate separate conservation efforts for each population.

Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


2015 ◽  
Vol 84 (2) ◽  
pp. 267-276 ◽  
Author(s):  
Józef Mitka ◽  
Piotr Boroń ◽  
Ada Wróblewska ◽  
Wojciech Bąba

The genetic diversity of two <em>Aconitum</em> species endemic to the Carpathian Mountains and Sudetes was studied. A reticulate evolution between them was earlier postulated as an effect of secondary contact. The genetic diversity at the individual and taxonomic levels was examined across the entire geographical ranges of the taxa in 11 populations based on 247 AFLP markers found in 112 individuals in the Sudetes and Western Carpathians. The overall genetic differentiation was greater within the Sudetic <em>A. plicatum</em> (<em>F</em><span><sub>ST</sub></span> = 0.139, <em>P</em> &lt; 0.001) than within the Carpathian <em>A. firmum</em> (<em>F</em><span><sub>ST</sub></span> = 0.062, <em>P</em> &lt; 0.001), presumably due to the long-lasting geographic isolation between the Giant Mts and Praděd (Sudetes) populations of the species. Interestingly, relatively distant and presently isolated populations of <em>A. plicatum</em> and <em>A. f.</em> subsp. <em>maninense</em> share a part of their genomes. It could be an effect of their common evolutionary history, including past and present reticulations. The introgression among infraspecific taxa of <em>Aconitum</em> is common, probably as a result of seed dispersal within a distance of ca. 20 km (Mantel’s <em>r</em> = 0.36, <em>P</em> = 0.01). <em>Aconitum f.</em> subsp. <em>maninense</em> had the highest genetic diversity indices: Nei’s <em>h</em> and rarefied <em>FAr</em>, and divergence index <em>DW</em> (<em>P</em> ≤ 0.05), pointing to its presumably ancient age and long-term isolation.


2021 ◽  
pp. 1-5
Author(s):  
Lim R ◽  
◽  
Chang SKY ◽  

Cholecystectomy is a common surgical gold-standard treatment for cholelithiasis and its complications. Generally, gallbladder removal has no long-term ramifications, and most patients recover quickly without impairment on daily living activities. Nonetheless, some patients are found to develop postcholecystectomy syndrome (PCS) or diarrhoea (PCD), which can be uncomfortable, inconvenient and impair living quality. There is neither clear aetiology, nor clear solution for PCS/PCD. The significance of gut microbiome in maintaining a healthy gastrointestinal system is well-established. Dysbiosis, an imbalance between commensal and pathogenic bacteria, can lead to multiple GIT disorders like IBS or functional dyspepsia and has a strong association with change in stool consistency [1-3]. Alteration in gut microbiota can easily occur with physical or chemical changes. An invasive procedure like cholecystectomy exposes the intestinal lumen to exogenous bacteria and causes inflammatory changes, while secretory pattern changes of bacteriostatic bile acid disrupt the pH and microbial composition of the intestinal lumen. As such, it is worth understanding GIT microbiota changes post-cholecystectomy. While the concept of gut microbiome changes potentially causing PCS/PCD is not unknown, there is lack of literature reviewing research on what these microbial alterations are and establishing their association with PCS/PCD. In this review, we consolidate previous findings on post-cholecystectomy microbial alterations, effectiveness of diet on PCS/PCD based on gut microbiota and discuss the overall link between gut microbiome and PCS/PCD. This can deepen insight into aetiologies of idiopathic PCS/PCD, provide better management of PCS/PCD-associated comorbidities, and potentially offer a resolution for PCS/PCD through prescription of probiotics and prebiotics.


2021 ◽  
pp. 1-29
Author(s):  
Erica Ma ◽  
Gertraud Maskarinec ◽  
Unhee Lim ◽  
Carol J. Boushey ◽  
Lynne R. Wilkens ◽  
...  

Abstract As past usual diet quality may affect gut microbiome (GM) composition, we examined the association of the Healthy Eating Index (HEI)-2015 assessed 21 and 9 years before stool collection with measures of fecal microbial composition in a subset of the Multiethnic Cohort. A total of 5,936 participants completed a validated quantitative food frequency questionnaire (QFFQ) at cohort entry (Q1, 1993-96), 5,280 at follow-up (Q3, 2003-08), and 1,685 also at a second follow-up (Adiposity Phenotype Study (APS), 2013–16). All participants provided a stool sample in 2013-2016. Fecal microbial composition was obtained from 16S rRNA gene sequencing (V1-V3 region). HEI-2015 scores were computed based on each QFFQ. Using linear regression adjusted for relevant covariates, we calculated associations of HEI-2015 scores with gut microbial diversity and 152 individual genera. The mean HEI-2015 scores increased from Q1 (67±10) to Q3 (71±11) and APS (72±10). Alpha diversity assessed by the Shannon Index was significantly higher with increasing tertiles of HEI-2015. Of the 152 bacterial genera tested, seven (Anaerostipes, Coprococcus_2, Eubacterium eligens, Lachnospira, Lachnospiraceae_ND3007, Ruminococcaceae_UCG-013, and Ruminococcus_1) were positively and five (Collinsella, Parabacteroides, Ruminiclostridium_5, Ruminococcus gnavus, and Tyzzerella) were inversely associated with HEI-2015 assessed in Q1, Q3, and APS. The estimates of change per unit of the HEI-2015 score associated with the abundance of these 12 genera were consistent across the three questionnaires. The quality of past diet, assessed as far as ˜20 years before stool collection, is equally predictive of GM composition as concurrently assessed diet, indicative of the long-term consistency of this relation.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S439-S439
Author(s):  
Eric Ellorin ◽  
Jill Blumenthal ◽  
Sonia Jain ◽  
Xiaoying Sun ◽  
Katya Corado ◽  
...  

Abstract Background “PrEP whore” has been used both as a pejorative by PrEP opponents in the gay community and, reactively, by PrEP advocates as a method to reclaim the label from stigmatization and “slut-shaming.” The actual prevalence and impact of such PrEP-directed stigma on adherence have been insufficiently studied. Methods CCTG 595 was a randomized controlled PrEP demonstration project in 398 HIV-uninfected MSM and transwomen. Intracellular tenofovir-diphosphate (TFV-DP) levels at weeks 12 and 48 were used as a continuous measure of adherence. At study visits, participants were asked to describe how they perceived others’ reactions to them being on PrEP. These perceptions were categorized a priori as either “positively framed,” “negatively framed,” or both. We used Wilcoxon rank-sum to determine the association between positive and negative framing and TFV-DP levels at weeks 12 and 48. Results By week 4, 29% of participants reported perceiving positive reactions from members of their social groups, 5% negative, and 6% both. Reporting decreased over 48 weeks, but positive reactions were consistently reported more than negative. At week 12, no differences in mean TFV-DP levels were observed in participants with positively-framed reactions compared with those reporting no outcome or only negatively-framed (1338 [IQR, 1036-1609] vs. 1281 [946-1489] fmol/punch, P = 0.17). Additionally, no differences were observed in those with negative reactions vs. those without (1209 [977–1427] vs. 1303 [964–1545], P = 0.58). At week 48, mean TFV-DP levels trended toward being higher among those that report any reaction, regardless if positive (1335 [909–1665] vs. 1179 [841–1455], P = 0.09) or negative (1377 [1054–1603] vs. 1192 [838–1486], P = 0.10) than those reporting no reaction. At week 48, 46% of participants reported experiencing some form of PrEP-directed judgment, 23% reported being called “PrEP whore,” and 21% avoiding disclosing PrEP use. Conclusion Over 48 weeks, nearly half of participants reported some form of judgment or stigmatization as a consequence of PrEP use. However, individuals more frequently perceived positively framed reactions to being on PrEP than negative. Importantly, long-term PrEP adherence does not appear to suffer as a result of negative PrEP framing. Disclosures All authors: No reported disclosures.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aaro Salosensaari ◽  
Ville Laitinen ◽  
Aki S. Havulinna ◽  
Guillaume Meric ◽  
Susan Cheng ◽  
...  

AbstractThe collection of fecal material and developments in sequencing technologies have enabled standardised and non-invasive gut microbiome profiling. Microbiome composition from several large cohorts have been cross-sectionally linked to various lifestyle factors and diseases. In spite of these advances, prospective associations between microbiome composition and health have remained uncharacterised due to the lack of sufficiently large and representative population cohorts with comprehensive follow-up data. Here, we analyse the long-term association between gut microbiome variation and mortality in a well-phenotyped and representative population cohort from Finland (n = 7211). We report robust taxonomic and functional microbiome signatures related to the Enterobacteriaceae family that are associated with mortality risk during a 15-year follow-up. Our results extend previous cross-sectional studies, and help to establish the basis for examining long-term associations between human gut microbiome composition, incident outcomes, and general health status.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Travis T. Sims ◽  
Molly B. El Alam ◽  
Tatiana V. Karpinets ◽  
Stephanie Dorta-Estremera ◽  
Venkatesh L. Hegde ◽  
...  

AbstractDiversity of the gut microbiome is associated with higher response rates for cancer patients receiving immunotherapy but has not been investigated in patients receiving radiation therapy. Additionally, current studies investigating the gut microbiome and outcomes in cancer patients may not have adjusted for established risk factors. Here, we sought to determine if diversity and composition of the gut microbiome was independently associated with survival in cervical cancer patients receiving chemoradiation. Our study demonstrates that the diversity of gut microbiota is associated with a favorable response to chemoradiation. Additionally, compositional variation among patients correlated with short term and long-term survival. Short term survivor fecal samples were significantly enriched in Porphyromonas, Porphyromonadaceae, and Dialister, whereas long term survivor samples were significantly enriched in Escherichia Shigella, Enterobacteriaceae, and Enterobacteriales. Moreover, analysis of immune cells from cervical tumor brush samples by flow cytometry revealed that patients with a high microbiome diversity had increased tumor infiltration of CD4+ lymphocytes as well as activated subsets of CD4 cells expressing ki67+ and CD69+ over the course of radiation therapy. Modulation of the gut microbiota before chemoradiation might provide an alternative way to enhance treatment efficacy and improve treatment outcomes in cervical cancer patients.


2021 ◽  
Vol 5 (4) ◽  
Author(s):  
Danxia Yu ◽  
Yaohua Yang ◽  
Jirong Long ◽  
Wanghong Xu ◽  
Qiuyin Cai ◽  
...  

ABSTRACT Background Diet is known to affect human gut microbiome composition; yet, how diet affects gut microbiome functionality remains unclear. Objective We compared the diversity and abundance/presence of fecal microbiome metabolic pathways among individuals according to their long-term diet quality. Methods In 2 longitudinal cohorts, we assessed participants’ usual diets via repeated surveys during 1996–2011 and collected a stool sample in 2015–2018. Participants who maintained a healthy or unhealthy diet (i.e., stayed in the highest or lowest quintile of a healthy diet score throughout follow-up) were selected. Participants were excluded if they reported a history of cancer, cardiovascular disease, diabetes, or hypertension; had diarrhea or constipation in the last 7 d; or used antibiotics in the last 6 mo before stool collection. Functional profiling of shotgun metagenomics was performed using HUMAnN2. Associations of dietary variables and 420 microbial metabolic pathways were evaluated via multivariable-adjusted linear or logistic regression models. Results We included 144 adults (mean age = 64 y; 55% female); 66 had an unhealthy diet and 78 maintained a healthy diet. The healthy diet group had higher Shannon α-diversity indexes of microbial gene families and metabolic pathways (both P &lt; 0.02), whereas β-diversity, as evaluated by Bray-Curtis distance, did not differ between groups (both P &gt; 0.50). At P &lt; 0.01 [false discovery rate (FDR) &lt;0.15], the healthy diet group showed enriched pathways for vitamin and carrier biosynthesis (e.g., tetrahydrofolate, acetyl-CoA, and l-methionine) and tricarboxylic acid (TCA) cycle, and increased degradation (or reduced biosynthesis) of certain sugars [e.g., cytidine monophosphate (CMP)-legionaminate, deoxythymidine diphosphate (dTDP)-l-rhamnose, and sucrose], nucleotides, 4-aminobutanoate, methylglyoxal, sulfate, and aromatic compounds (e.g., catechol and toluene). Meanwhile, several food groups were associated with the CMP-legionaminate biosynthesis pathway at FDR &lt;0.05. Conclusions In a small longitudinal study of generally healthy, older Chinese adults, we found long-term healthy eating was associated with increased α-diversity of microbial gene families and metabolic pathways and altered symbiotic functions relevant to human nutrition and health.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Shasha Xiang ◽  
Kun Ye ◽  
Mian Li ◽  
Jian Ying ◽  
Huanhuan Wang ◽  
...  

Abstract Background Xylitol, a white or transparent polyol or sugar alcohol, is digestible by colonic microorganisms and promotes the proliferation of beneficial bacteria and the production of short-chain fatty acids (SCFAs), but the mechanism underlying these effects remains unknown. We studied mice fed with 0%, 2% (2.17 g/kg/day), or 5% (5.42 g/kg/day) (weight/weight) xylitol in their chow for 3 months. In addition to the in vivo digestion experiments in mice, 3% (weight/volume) (0.27 g/kg/day for a human being) xylitol was added to a colon simulation system (CDMN) for 7 days. We performed 16S rRNA sequencing, beneficial metabolism biomarker quantification, metabolome, and metatranscriptome analyses to investigate the prebiotic mechanism of xylitol. The representative bacteria related to xylitol digestion were selected for single cultivation and co-culture of two and three bacteria to explore the microbial digestion and utilization of xylitol in media with glucose, xylitol, mixed carbon sources, or no-carbon sources. Besides, the mechanisms underlying the shift in the microbial composition and SCFAs were explored in molecular contexts. Results In both in vivo and in vitro experiments, we found that xylitol did not significantly influence the structure of the gut microbiome. However, it increased all SCFAs, especially propionate in the lumen and butyrate in the mucosa, with a shift in its corresponding bacteria in vitro. Cross-feeding, a relationship in which one organism consumes metabolites excreted by the other, was observed among Lactobacillus reuteri, Bacteroides fragilis, and Escherichia coli in the utilization of xylitol. At the molecular level, we revealed that xylitol dehydrogenase (EC 1.1.1.14), xylulokinase (EC 2.7.1.17), and xylulose phosphate isomerase (EC 5.1.3.1) were key enzymes in xylitol metabolism and were present in Bacteroides and Lachnospiraceae. Therefore, they are considered keystone bacteria in xylitol digestion. Also, xylitol affected the metabolic pathway of propionate, significantly promoting the transcription of phosphate acetyltransferase (EC 2.3.1.8) in Bifidobacterium and increasing the production of propionate. Conclusions Our results revealed that those key enzymes for xylitol digestion from different bacteria can together support the growth of micro-ecology, but they also enhanced the concentration of propionate, which lowered pH to restrict relative amounts of Escherichia and Staphylococcus. Based on the cross-feeding and competition among those bacteria, xylitol can dynamically balance proportions of the gut microbiome to promote enzymes related to xylitol metabolism and SCFAs.


Sign in / Sign up

Export Citation Format

Share Document