scholarly journals Applied phenomics and genomics for improving barley yellow dwarf resistance in winter wheat

2022 ◽  
Author(s):  
Paula Silva ◽  
Byron Evers ◽  
Alexandria Kieffaber ◽  
Xu Wang ◽  
Richard Brown ◽  
...  

Barley yellow dwarf (BYD) is one of the major viral diseases of cereals. Phenotyping BYD in wheat is extremely challenging due to similarities to other biotic and abiotic stresses. Breeding for resistance is additionally challenging as the wheat primary germplasm pool lacks genetic resistance, with most of the few resistance genes named to date originating from a wild relative species. The objectives of this study were to, i) evaluate the use of high-throughput phenotyping (HTP) from unmanned aerial systems to improve BYD assessment and selection, ii) identify genomic regions associated with BYD resistance, and iii) evaluate genomic prediction models ability to predict BYD resistance. Up to 107 wheat lines were phenotyped during each of five field seasons under both insecticide treated and untreated plots. Across all seasons, BYD severity was lower with the insecticide treatment and plant height (PTHTM) and grain yield (GY) showed increased values relative to untreated entries. Only 9.2% of the lines were positive for the presence of the translocated segment carrying resistance gene Bdv2 on chromosome 7DL. Despite the low frequency, this region was identified through association mapping. Furthermore, we mapped a potentially novel genomic region for resistance on chromosome 5AS. Given the variable heritability of the trait (0.211 0.806), we obtained relatively good predictive ability for BYD severity ranging between 0.06 0.26. Including Bdv2 on the predictive model had a large effect for predicting BYD but almost no effect for PTHTM and GY. This study was the first attempt to characterize BYD using field-HTP and apply GS to predict the disease severity. These methods have the potential to improve BYD characterization and identifying new sources of resistance will be crucial for delivering BYD resistant germplasm.

2001 ◽  
Vol 52 (12) ◽  
pp. 1375 ◽  
Author(s):  
M. G. Francki ◽  
M. G. Francki ◽  
H. W. Ohm ◽  
H. W. Ohm ◽  
J. M. Anderson ◽  
...  

The lack of suitable genes in existing wheat germplasm collections makes breeding for specific traits a difficult task. Although tolerance to barley yellow dwarf viruses (BYDV) has been reported in wheat accessions, there are no suitable levels of resistance to BYDV, so genes are sought from wild relatives. The ability for Thinopyrum species to inhibit replication of BYDV makes them attractive sources of resistance for germplasm development. Breeding programs are exploiting Thinopyrum species to develop wheat germplasm resistant to BYDV. The transfer of genes from Thinopyrum into wheat by wide crossing and selecting progeny using molecular markers identified suitable material to some strains of BYDV. The implementation of molecular marker technology has been useful for rapid selection of wheat lines with resistance to some strains of BYDV in a breeding program. However, it is now clear that Thinopyrum species contain a number of resistance genes on different genomes and homoeologous chromosomes. In order to achieve broad-spectrum resistance to the various serotypes of the BYDV complex it will be best to combine a number of these genes. Research efforts are now focussed on introgressing other genes from Thinopyrum into wheat that provide resistance to several additional strains of BYDV. Molecular markers will play an important role during selection in pyramiding genes to develop wheat germplasm with broadspectrum BYDV resistance.


1993 ◽  
Vol 44 (1) ◽  
pp. 33 ◽  
Author(s):  
DR Eagling ◽  
O Villalta ◽  
GM Halloran

Genotypes of perennial ryegrass cv. Ellett were classed as susceptible or resistant to infection with the PAV-related isolate of barley yellow dwarf luteovirus (BYDV) on the basis of dry weight yield and the presence or absence of detectable virus as measured with ELISA. In the inoculated treatments, there was a significant (P < 0.05) decrease in plant dry weight of susceptible compared to resistant genotypes, whereas in uninoculated treatments, there was no significant (P > 0.05) difference in yield between the two genotype classes. Superior plants from four cultivars of perennial ryegrass were selected from two field sites on the basis of superior winter growth and seasonal production. In glasshouse experiments, resistance to the virus was detected in these selections. The percentage of infected selections from individual cultivars varied between 18-46%, indicating that at least 50% were resistant to the virus.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shormin Choudhury ◽  
Philip Larkin ◽  
Rugen Xu ◽  
Matthew Hayden ◽  
Kerrie Forrest ◽  
...  

Abstract Background Barley yellow dwarf (BYD) is an important virus disease that causes significant reductions in wheat yield. For effective control of Barley yellow dwarf virus through breeding, the identification of genetic sources of resistance is key to success. In this study, 335 geographically diverse wheat accessions genotyped using an Illumina iSelect 90 K single nucleotide polymorphisms (SNPs) bead chip array were used to identify new sources of resistance to BYD in different environments. Results A genome-wide association study (GWAS) performed using all the generalised and mixed linkage models (GLM and MLM, respectively) identified a total of 36 significant marker-trait associations, four of which were consistently detected in the K model. These four novel quantitative trait loci (QTL) were identified on chromosomes 2A, 2B, 6A and 7A and associated with markers IWA3520, IWB24938, WB69770 and IWB57703, respectively. These four QTL showed an additive effect with the average visual symptom score of the lines containing resistance alleles of all four QTL being much lower than those with less favorable alleles. Several Chinese landraces, such as H-205 (Baimazha) and H-014 (Dahongmai) which have all four favorable alleles, showed consistently higher resistance in different field trials. None of them contained the previously described Bdv2, Bdv3 or Bdv4 genes for BYD resistance. Conclusions This study identified multiple novel QTL for BYD resistance and some resistant wheat genotypes. These will be useful for breeders to generate combinations with and/or without Bdv2 to achieve higher levels and more stable BYD resistance.


2019 ◽  
Vol 3 ◽  
pp. 1255
Author(s):  
Ahmad Salahuddin Mohd Harithuddin ◽  
Mohd Fazri Sedan ◽  
Syaril Azrad Md Ali ◽  
Shattri Mansor ◽  
Hamid Reza Jifroudi ◽  
...  

Unmanned aerial systems (UAS) has many advantages in the fields of SURVAILLANCE and disaster management compared to space-borne observation, manned missions and in situ methods. The reasons include cost effectiveness, operational safety, and mission efficiency. This has in turn underlined the importance of UAS technology and highlighted a growing need in a more robust and efficient unmanned aerial vehicles to serve specific needs in SURVAILLANCE and disaster management. This paper first gives an overview on the framework for SURVAILLANCE particularly in applications of border control and disaster management and lists several phases of SURVAILLANCE and service descriptions. Based on this overview and SURVAILLANCE phases descriptions, we show the areas and services in which UAS can have significant advantage over traditional methods.


Sign in / Sign up

Export Citation Format

Share Document