scholarly journals Treatment of wound infections in a mouse model using Zn2+-releasing phage bound to gold nanorods

2022 ◽  
Author(s):  
HUAN PENG ◽  
Daniele Rossetto ◽  
Sheref Mansy ◽  
Maria Jordan ◽  
Kenneth Roos ◽  
...  

Infections caused by drug-resistant bacteria, particularly gram-negative organisms, are increasingly difficult to treat using antibiotics. A potential alternative is phage therapy, in which phages infect and lyse the bacterial host. However, phage therapy poses serious drawbacks and safety concerns, such as the risk of genetic transduction of antibiotic resistance genes, inconsistent pharmacokinetics, and unknown evolutionary potential. In contrast, metallic nanoparticles possess precise, tunable properties, including efficient conversion of electronic excitation into heat. In this work, we demonstrate that engineered phage-nanomaterial conjugates that target the gram-negative pathogen P. aeruginosa, are highly effective as a treatment of infected wounds in mice. Photothermal heating, performed as a single treatment (15 min) or as two treatments on consecutive days, rapidly reduced the bacterial load and released Zn2+ to promote wound healing. The phage-nanomaterial treatment was significantly more effective than systemic fluoroquinolone antibiotics in reducing both bacterial load and wound size, and was notably effective against a P. aeruginosa strain resistant to polymyxins, a last-line antibiotic therapy. Unlike these antibiotics, the phage-nanomaterial showed no detectable toxicity or systemic effects in mice, consistent with the short duration and localized nature of phage-nanomaterial treatment. Our results demonstrate that phage therapy controlled by inorganic nanomaterials can be a safe and effective antimicrobial strategy in vivo.

2021 ◽  
Author(s):  
Jessica Bratt

<p>The spread of antibiotic resistance and the emergence of multi-drug resistant bacteria is a major threat to public health. This study investigated a unique cytosine rich DNA structure, the i-Motif to deliver soluble Ag+ as a novel antimicrobial agent (AgiMs). AgiMs were evaluated in vitro against P. aeruginosa and A. baumannii strains. AgiMs displayed significant antibacterial activity against both P. aeruginosa and A. baumannii (median MIC: 0.875 µM and 0.75 µM, respectively) by rapid, bactericidal and concentration-dependent effect. Low concentrations of AgiMs showed efficacy against PAO1 20-h biofilms, resulting in 57% reduction in biomass (5 x MIC). A single dose of AgiMs extended survival of G. Mellonella larvae, with the therapeutic benefit paralleled in the reduction of internal bacterial load. Synergistic interactions were observed with the combination of AgiMs and tobramycin, a common antibiotic used to treat P. aeruginosa infections; indicating the potential for AgiMs to reinstate the potency of current antibiotics. This silver-based agent might be an alternative to the failing antibiotic regimes for MDR resistant infections. Further in vitro and in vivo studies are warranted to confirm the therapeutic potential. </p>


2020 ◽  
Author(s):  
Tingting Feng ◽  
Sebastian Leptihn ◽  
Ke Dong ◽  
Belinda Loh ◽  
Yan Zhang ◽  
...  

AbstractAs an antimicrobial therapy, therapeutic phages, also known as “Phage therapy” are able to inactivate multi-drug resistant bacteria such as methicillin and vancomycin resistant S. aureus and thus present a possible treatment for infections that are otherwise incurable. In this paper, we present a novel phage called JD419, which has a remarkably wide host-range. The virulent phage JD419 exhibits an elongated capsid and was able to infect and lyse 83 of all 129 tested clinical strains (64.3%) of multi-drug resistant S. aureus including MRSA. To evaluate the potential as a therapeutic phage, we tested the ability of phage JD419 to remain infectious after treatment exceeding physiological pH or temperature. The lytic activity of the phage was retained at pH values of 6.0-8.0 and at temperatures below 50°C. As phages sometimes contain virulence genes, we sequenced the complete genome of JD419. The 45509 bp genome contains a predicted 65 ORFs, none of which show homology to any known virulence or antibiotic resistance genes. Our study illustrates that Staphylococcus phage JD419 has the potential to be used for diagnostic, prophylaxic and therapeutic purposes.


2021 ◽  
Author(s):  
Jessica Bratt

<p>The spread of antibiotic resistance and the emergence of multi-drug resistant bacteria is a major threat to public health. This study investigated a unique cytosine rich DNA structure, the i-Motif to deliver soluble Ag+ as a novel antimicrobial agent (AgiMs). AgiMs were evaluated in vitro against P. aeruginosa and A. baumannii strains. AgiMs displayed significant antibacterial activity against both P. aeruginosa and A. baumannii (median MIC: 0.875 µM and 0.75 µM, respectively) by rapid, bactericidal and concentration-dependent effect. Low concentrations of AgiMs showed efficacy against PAO1 20-h biofilms, resulting in 57% reduction in biomass (5 x MIC). A single dose of AgiMs extended survival of G. Mellonella larvae, with the therapeutic benefit paralleled in the reduction of internal bacterial load. Synergistic interactions were observed with the combination of AgiMs and tobramycin, a common antibiotic used to treat P. aeruginosa infections; indicating the potential for AgiMs to reinstate the potency of current antibiotics. This silver-based agent might be an alternative to the failing antibiotic regimes for MDR resistant infections. Further in vitro and in vivo studies are warranted to confirm the therapeutic potential. </p>


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S653-S653
Author(s):  
Kenji Ota ◽  
Norihito Kaku ◽  
Naoki Uno ◽  
Kei Sakamoto ◽  
Kosuke Kosai ◽  
...  

Abstract Background Cefiderocol (CFDC) is a novel cephalosporin with siderophore structure, characterized by transportation through siderophore receptor on outer membrane of Gram-negative bacteria and structural stability against beta-lactamase. The antimicrobial activity against multidrug resistant bacteria is demonstrated in vitro and in vivo. In this study, we aimed to elucidate the in vivo efficacy of CFDC using ventilator-associated pneumonia (VAP) mouse model. Methods The minimum inhibitory concentration (MIC) of CFDC and meropenem (MEPM) against the test Acinetobacter baumannii (Ab) and Pseudomonas aeruginosa (Pa) isolates were measured by broth microdilution assay. Iron depleted medium was used for CFDC. For VAP mouse models, neutropenia was induced by cyclophosphamide intraperitoneal administration, followed by intubation of sterile tube in the trachea and inoculation of bacterial suspension. PK analysis were performed in infected mice, in order to determine treatment regimens to achieve targeted time above MIC (TAM) of free concentrations in plasma. Treatment was initiated 3 hours post infection and continued up to 120 h for survival analysis. To investigate the bactericidal effect, the mice were sacrificed to count bacterial load in the lung at 48 h and 24 h for VAP-Ab and Pa, respectively. Results MICs(mg/L) of CFDC and MEPM against Ab were 0.5 and 128, and Pa were 0.008 and 16, respectively. The treatment regimens to achieve target MIC were shown in Table 1. In order to assess dose dependency of CFDC, required doses to achieve TAM of 70%, 90%, and 100% were calculated. These doses used in the studies were achievable in human for CFDC, but not for MEPM due to high MICs of the test strains. In treatment study for VAP-Ab, bactericidal effect was achieved at TAM &gt; 70% in CFDC groups, as well as TAM 30% in MEPM group. In VAP-Pa, bactericidal effect was observed at TAM &gt; 90% in CFDC groups, as well as TAM 30% in MEPM group. Table 1.Treatment regimen and free TAM against VAP-Ab and Pa Figure 1. Bacterial load in the lungs of VAP-Ab and Pa Conclusion The efficacy of CFDC against VAP-Ab and Pa were demonstrated in this study. Although 90% free TAM was required for bactericidal effect, CFDC was shown to be effective against carbapenem-resistant Gram-negative pathogens at the recommended clinical dosing regimen. Disclosures Katsunori Yanagihara, MD, PhD, Shionogi & Co.,Ltd. (Grant/Research Support)


2021 ◽  
Vol 9 (2) ◽  
pp. 206
Author(s):  
Martyna Cieślik ◽  
Natalia Bagińska ◽  
Andrzej Górski ◽  
Ewa Jończyk-Matysiak

The authors emphasize how extremely important it is to highlight the role played by animal models in an attempt to determine possible phage interactions with the organism into which it was introduced as well as to determine the safety and effectiveness of phage therapy in vivo taking into account the individual conditions of a given organism and its physiology. Animal models in which phages are used make it possible, among other things, to evaluate the effective therapeutic dose and to choose the possible route of phage administration depending on the type of infection developed. These results cannot be applied in detail to the human body, but the knowledge gained from animal experiments is invaluable and very helpful. We would like to highlight how useful animal models may be for the possible effectiveness evaluation of phage therapy in the case of infections caused by gram-negative bacteria from the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species) group of pathogens. In this review, we focus specifically on the data from the last few years.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 435
Author(s):  
Sada Raza ◽  
Kinga Matuła ◽  
Sylwia Karoń ◽  
Jan Paczesny

Antimicrobial resistance is a significant threat to human health worldwide, forcing scientists to explore non-traditional antibacterial agents to support rapid interventions and combat the emergence and spread of drug resistant bacteria. Many new antibiotic-free approaches are being developed while the old ones are being revised, resulting in creating unique solutions that arise at the interface of physics, nanotechnology, and microbiology. Specifically, physical factors (e.g., pressure, temperature, UV light) are increasingly used for industrial sterilization. Nanoparticles (unmodified or in combination with toxic compounds) are also applied to circumvent in vivo drug resistance mechanisms in bacteria. Recently, bacteriophage-based treatments are also gaining momentum due to their high bactericidal activity and specificity. Although the number of novel approaches for tackling the antimicrobial resistance crisis is snowballing, it is still unclear if any proposed solutions would provide a long-term remedy. This review aims to provide a detailed overview of how bacteria acquire resistance against these non-antibiotic factors. We also discuss innate bacterial defense systems and how bacteriophages have evolved to tackle them.


2020 ◽  
Vol 9 (4) ◽  
pp. 1569-1577

The quorum sensing (QS) mechanism has become a viable research strategy for the discovery of plant-derived anti-virulent agents to control drug-resistant bacteria. The increasing incidences of drug-resistant bacteria and the effort to curb it necessitate this study. We investigated the QS inhibitory potential of Centaurea praecox extracts on Chromobacterium violaceum (CV), antibacterial activity, and determination of chemical composition using GC-MS. C. praecox was subjected to sequential extraction using hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), ethanol (ET), and aqueous (AQ) solvents. The extracts were subsequently evaluated for antibacterial activity using disc diffusion and QS violacein inhibition using spectrophotometry. The antibacterial effects of the extracts were moderate on gram-positive bacteria at 4 mg/mL in the order: HEX >EA >DCM >ET =AQ. However, the DCM extract demonstrated the most effective violacein inhibition of ≥80% at 0.3 mg/mL. QS violacein inhibitions were generally found to be concentration-dependent in the order: DCM >EA >HEX >ET =AQ with efficacies of ≥ 90% inhibition at ≥ 0.6 mg/mL. GC-MS analysis on the most potent DCM extract revealed N-vinylmethanimine, N-ethyl formamide, and propanamide among components identified. We concluded that C. praecox DCM extract contains bioactive chemicals as QS inhibitors and potential anti-virulent agents capable of combating the pathogenicity of drug-resistant bacteria in vivo.


2021 ◽  
Author(s):  
Yuan Liu ◽  
Ziwen Tong ◽  
Jingru Shi ◽  
Tian Deng ◽  
Ruichao Li ◽  
...  

Antimicrobial resistance has been a growing concern that gradually undermines our tradition treatment regimen. The fact that few antibacterial drugs with new scaffolds or targets have been approved in the past two decades aggravates this crisis. Repurposing previously approved drugs as potent antibiotic adjuvants offers a cost effective strategy to mitigate the development of resistance and tackle the increasing infections by multidrug resistant (MDR) bacteria. Herein, we found that benzydamine, a widely used non-steroidal anti-inflammatory drug in clinic, remarkably potentiated broad spectrum antibiotic tetracyclines activity against a panel of clinical important resistant pathogens, including MRSA, VRE, MCRPEC and tet (X)-positive Gram negative bacteria. Further mechanistically experiments showed that benzydamine dissipated membrane potential (ΔΨ) in both Gram positive and negative bacteria, which in turn upregulated the transmembrane proton gradient (ΔpH) and promoted the uptake of tetracyclines. Additionally, benzydamine exacerbated the oxidative stress by triggering the production of ROS and suppressing GAD system mediated oxidative defensive. This mode of action explains the great bactericidal activity of the doxycycline benzydamine combination against different metabolic states of bacteria including persister cells. As a proof of concept, the in vivo efficacy of this combination therapy was evidenced in multiple animal infection models. These findings revealed that benzydamine is a promising tetracycline antibiotics adjuvant and has the potential to address life threatening infections by MDR bacteria.


Sign in / Sign up

Export Citation Format

Share Document