scholarly journals Connectome-wide mega-analysis reveals robust patterns of atypical functional connectivity in autism

Author(s):  
Iva Ilioska ◽  
Marianne Oldehinkel ◽  
Alberto Llera ◽  
Sidhant Chopra ◽  
Tristan Looden ◽  
...  

Neuroimaging studies on functional connectivity (FC) in autism have been hampered by small sample sizes and inconsistent findings with regard to whether connectivity is increased or decreased in individuals with autism, whether these alterations affect focal systems or reflect a brain-wide dysfunction, and whether these are age- and/or sex-dependent. The study included resting-state fMRI and clinical data from the LEAP and the ABIDE I and II initiatives, of 1824 (796 with autism) participants with age range 5-58 years. Between-group differences in FC were assessed, and associations between FC and clinical symptom ratings were investigated through canonical correlation analysis. Autism was associated with a brain-wide pattern of hypo- and hyperconnectivity. Hypoconnectivity predominantly affected sensory and higher-order attentional networks and correlated with social impairments, restrictive and repetitive behavior (RRB), and sensory processing. Hyperconnectivity was observed primarily between the default mode network and the rest of the brain, and between cortical and subcortical systems. This pattern was strongly associated with social impairments and sensory processing. Interactions between diagnosis and age or sex were not statistically significant. The FC alterations observed in this study, which primarily involve hypoconnectivity of primary sensory and attention networks and hyperconnectivity of the DMN and subcortex with the rest of the brain, do not appear to be age or sex-dependent and correlate with clinical dimensions of social difficulties, RRBs, and alterations in sensory processing. These findings suggest that the observed connectivity alterations are stable, trait-like features of autism that are related to the three main symptom domains.

2021 ◽  
pp. 216770262110302
Author(s):  
M. Justin Kim ◽  
Maxwell L. Elliott ◽  
Annchen R. Knodt ◽  
Ahmad R. Hariri

Past research on the brain correlates of trait anger has been limited by small sample sizes, a focus on relatively few regions of interest, and poor test–retest reliability of functional brain measures. To address these limitations, we conducted a data-driven analysis of variability in connectome-wide functional connectivity in a sample of 1,048 young adult volunteers. Multidimensional matrix regression analysis showed that self-reported trait anger maps onto variability in the whole-brain functional connectivity patterns of three brain regions that serve action-related functions: bilateral supplementary motor areas and the right lateral frontal pole. We then demonstrate that trait anger modulates the functional connectivity of these regions with canonical brain networks supporting somatomotor, affective, self-referential, and visual information processes. Our findings offer novel neuroimaging evidence for interpreting trait anger as a greater propensity to provoked action, which supports ongoing efforts to understand its utility as a potential transdiagnostic marker for disordered states characterized by aggressive behavior.


Author(s):  
S. Vidhusha ◽  
A. Kavitha

Autism spectrum disorders are connected with disturbances of neural connectivity. Functional connectivity is typically examined during a cognitive task, but also exists in the absence of a task. While a number of studies have performed functional connectivity analysis to differentiate controls and autism individuals, this work focuses on analyzing the brain activation patterns not only between controls and autistic subjects, but also analyses the brain behaviour present within autism spectrum. This can bring out more intuitive ways to understand that autism individuals differ individually. This has been performed between autism group relative to the control group using inter-hemispherical analysis. Indications of under connectivity were exhibited by the Granger Causality (GC) and Conditional Granger Causality (CGC) in autistic group. Results show that as connectivity decreases, the GC and CGC values also get decreased. Further, to demark the differences present within the spectrum of autistic individuals, GC and CGC values have been calculated.


2020 ◽  
Author(s):  
Colin B Hansen ◽  
Qi Yang ◽  
Ilwoo Lyu ◽  
Francois Rheault ◽  
Cailey Kerley ◽  
...  

AbstractBrain atlases have proven to be valuable neuroscience tools for localizing regions of interest and performing statistical inferences on populations. Although many human brain atlases exist, most do not contain information about white matter structures, often neglecting them completely or labelling all white matter as a single homogenous substrate. While few white matter atlases do exist based on diffusion MRI fiber tractography, they are often limited to descriptions of white matter as spatially separate “regions” rather than as white matter “bundles” or fascicles, which are well-known to overlap throughout the brain. Additional limitations include small sample sizes, few white matter pathways, and the use of outdated diffusion models and techniques. Here, we present a new population-based collection of white matter atlases represented in both volumetric and surface coordinates in a standard space. These atlases are based on 2443 subjects, and include 216 white matter bundles derived from 6 different state-of-the-art tractography techniques. This atlas is freely available and will be a useful resource for parcellation and segmentation.


2015 ◽  
Vol 54 (03) ◽  
pp. 227-231 ◽  
Author(s):  
F. Baglio ◽  
M. M. Laganà ◽  
M. G. Preti ◽  
P. Cecconi ◽  
M. Clerici ◽  
...  

SummaryIntroduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Biosignal Interpretation: Advanced Methods for Neural Signals and Images”.Background: Voxel-based functional connectivity analysis is a common method for resting state fMRI data. However, correlations between the seed and other brain voxels are corrupted by random estimate errors yielding false connections within the functional connectivity map (FCmap). These errors must be taken into account for a correct interpretation of single-subject results.Objectives: We estimated the statistical range of random errors and propose two methods for an individual setting of correlation threshold for FCmaps.Methods: We assessed the amount of random errors by means of surrogate time series and described its distribution within the brain. On the basis of these results, the FCmaps of the posterior cingulate cortex (PCC) from 15 healthy subjects were thresholded with two innovative methods: the first one consisted in the computation of a unique (global) threshold value to be applied to all brain voxels, while the second method is to set a different (local) threshold of each voxel of the FCmap.Results: The distribution of random errors within the brain was observed to be homogeneous and, after thresholding with both methods, the default mode network areas were well identifiable. The two methods yielded similar results, however the application of a global threshold to all brain voxels requires a reduced computational load. The inter-subject variability of the global threshold was observed to be very low and not correlated with age. Global threshold values are also almost independent from the number of surrogates used for their computation, so the analyses can be optimized using a reduced number of surrogate time series.Conclusions: We demonstrated the efficacy of FCmaps thresholding based on random error estimation. This method can be used for a reliable single-subject analysis and could also be applied in clinical setting, to compute individual measures of disease progression or quantitative response to pharmacological or rehabilitation treatments.


2020 ◽  
Author(s):  
Anira Escrichs ◽  
Carles Biarnes ◽  
Josep Garre-Olmo ◽  
José Manuel Fernández-Real ◽  
Rafel Ramos ◽  
...  

AbstractNormal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state fMRI studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain activity across the whole-brain functional network can provide a better characterization of age-related changes. Here we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-dependent (BOLD) signals to analyze resting-state fMRI data from 620 subjects divided into two groups (‘middle-age group’ (n=310); age range, 50-65 years vs. ‘older group’ (n=310); age range, 66-91 years). Applying the Intrinsic-Ignition Framework to assess the effect of spontaneous local activation events on local-global integration, we found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient global communication in the brain.


2021 ◽  
Author(s):  
Daniel S Quintana

Various factors have been attributed to the inconsistent reproducibility of human oxytocin research in the cognitive and behavioral sciences. These factors include small sample sizes, a lack of pre-registered studies, and the absence of overarching theoretical frameworks that can account for oxytocin’s effects over a broad range of contexts. While there have been efforts to remedy these issues, there has been very little systematic scrutiny of the role of auxiliary assumptions, which are claims that are not central for testing a hypothesis but nonetheless critical for testing theories. For instance, the hypothesis that oxytocin increases the salience of social cues is predicated on the assumption that intranasally administered oxytocin increases oxytocin levels in the brain. Without robust auxiliary assumptions, it is unclear whether a hypothesis testing failure is due to an incorrect hypothesis or weak auxiliary assumptions. Consequently, weak auxiliary assumptions can be blamed for hypothesis failure, thereby safeguarding theories from falsification. In this article, I will evaluate the body of evidence for key auxiliary assumptions in human behavioral oxytocin research in terms of theory, experimental design, and statistical inference, and highlight assumptions that require stronger evidence. Strong auxiliary assumptions will leave hypotheses vulnerable for falsification, which will improve hypothesis testing and consequently advance our understanding of oxytocin’s role in behavior and cognition.


2020 ◽  
Author(s):  
Yameng Gu ◽  
Lucas E. Sainburg ◽  
Sizhe Kuang ◽  
Feng Han ◽  
Jack W. Williams ◽  
...  

AbstractThe brain exhibits highly organized patterns of spontaneous activity as measured by resting-state fMRI fluctuations that are being widely used to assess the brain’s functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, though this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Eleonora Tavazzi ◽  
Marta Cazzoli ◽  
Alice Pirastru ◽  
Valeria Blasi ◽  
Marco Rovaris ◽  
...  

Background: Motor rehabilitation is routinely used in clinical practice as an effective method to reduce progressive disability gain in multiple sclerosis (MS), but rehabilitation approaches are typically unstandardized, and only few studies have investigated the impact of rehabilitation on brain neuroplasticity.Objective: To summarize and critically analyze studies applying MRI markers of functional connectivity and structural changes to assess the effect of motor rehabilitation on brain neuroplasticity in MS.Methods: Literature search was performed using PubMed and EMBASE, selecting studies having as a subject motor rehabilitation and advanced MRI techniques investigating neuroplasticity in adult patients affected by MS.Results: Seventeen out of 798 papers were selected, of which 5 applied structural MRI (4 diffusion tensor imaging, 1 volumetric measurements), 7 applied functional fMRI (5 task-related fMRI, 2 resting-state fMRI) whereas the remaining 5 applied both structural and functional imaging.Discussion: The considerable data heterogeneity and the small sample sizes characterizing the studies limit interpretation and generalization of the results. Overall, motor rehabilitation promotes clinical improvement, paralleled by positive adaptive brain changes, whose features and extent depend upon different variables, including the type of rehabilitation approach. MRI markers of functional and structural connectivity should be implemented in studies testing the efficacy of motor rehabilitation. They allow for a better understanding of neuroplastic mechanisms underlying rehabilitation-mediated clinical achievements, facilitating the identification of rehabilitation strategies tailored to patients' needs and abilities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Claudia Piervincenzi ◽  
Nikolaos Petsas ◽  
Laura De Giglio ◽  
Maurizio Carmellini ◽  
Costanza Giannì ◽  
...  

Only a few studies have evaluated the brain functional changes associated with disease-modifying therapies (DMTs) in multiple sclerosis (MS), though none used a composite measure of clinical and MRI outcomes to evaluate DMT-related brain functional connectivity (FC) measures predictive of short-term outcome. Therefore, we investigated the following: (1) baseline FC differences between patients who showed evidence of disease activity after a specific DMT and those who did not; (2) DMT-related effects on FC, and; (3) possible relationships between DMT-related FC changes and changes in performance. We used a previously analyzed dataset of 30 relapsing MS patients who underwent fingolimod treatment for 6 months and applied the “no evidence of disease activity” (NEDA-3) status as a clinical response indicator of treatment efficacy. Resting-state fMRI data were analyzed to obtain within- and between-network FC measures. After therapy, 14 patients achieved NEDA-3 status (hereinafter NEDA), while 16 did not (EDA). The two groups significantly differed at baseline, with the NEDA group having higher within-network FC in the anterior and posterior default mode, auditory, orbitofrontal, and right frontoparietal networks than the EDA. After therapy, NEDA showed significantly reduced within-network FC in the posterior default mode and left frontoparietal networks and increased between-network FC in the posterior default mode/orbitofrontal networks; they also showed PASAT improvement, which was correlated with greater within-network FC decrease in the posterior default mode network and with greater between-network FC increase. No significant longitudinal FC changes were found in the EDA. Taken together, these findings suggest that NEDA status after fingolimod is related to higher within-network FC at baseline and to a consistent functional reorganization after therapy.


Sign in / Sign up

Export Citation Format

Share Document