scholarly journals Multiplex PCR reveals unique trends in pathogen and parasitoid infestations of alfalfa leafcutting brood cells.

2022 ◽  
Author(s):  
Justin Clements ◽  
Maggie Haylett ◽  
Brenda Nelson ◽  
Silas Shumate ◽  
Nicole Young ◽  
...  

The alfalfa leafcutting bee Megachile rotundata Fabricius (HYMENOPTERA: Megachilidae) is an important pollinator for multiple agricultural seed commodities in the United States. Megachile rotundata is a solitary bee that forms brood cocoons where its larvae can develop. During the developmental stages of growth, broods can be preyed upon by multiple different fungal and bacterial pathogens and insect predators and parasitoids, resulting in the loss of the developing larvae. Larval loss is a major concern for alfalfa (Medicago sativa L.) seed producers because they rely on pollinator services provided by Megachile rotundata and reduced pollination rates result in lower yields and increased production costs. In the present study, we examined the taxonomic composition of organisms found within M. rotundata brood cells using a multiplex PCR assay which was developed for the detection of the most common bacterial, fungal, and invertebrate pests and pathogens of M. rotundata larvae. Known pests of M. rotundata were detected, including members of the fungal genus Ascosphaera, the causative agent of chalkbrood. Co-infection of single brood cells by multiple Ascosphaera species was confirmed, with potential implications for chalkbrood disease management. The multiplex assay also identified DNA from more than 2,400 total species including multiple new predators and pathogenetic species not previously documented in associated with M. rotundata brood cells.

Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 333-341 ◽  
Author(s):  
Michael J. Stulberg ◽  
Jonathan Shao ◽  
Qi Huang

Ralstonia solanacearum race 3 biovar 2 strains are considered select agents by the U.S. government because they are not endemic to the United States and have the potential to cause brown rot in our potato production fields. Simple and accurate methods are needed for quick identification prior to more discriminating but time-consuming verification methods. We developed a multiplex PCR assay that identifies R. solanacearum species complex strains, signals whether the strain detected is a select agent, and controls for false negatives associated with PCR inhibition or unsuccessful DNA extractions in one reaction. We identified unique sequences of non-phage-related DNA for the R. solanacearum species complex strains, and for select agent strains, using in silico genome subtraction. We also designed and included an internal plant DNA control assay. Our multiplex PCR assay correctly identified 90 R. solanacearum species complex strains and 34 select agent strains, while not recognizing five out-group bacterial species. Additionally, the multiplex PCR assay facilitated the detection of plant DNA and R. solanacearum from infected tomato, potato, geranium, and tobacco plants. Our rapid, accurate, and reliable detection assay can help government officials make timely and appropriate recommendations to exclude this bacterium from the United States.


2010 ◽  
Vol 73 (9) ◽  
pp. 1618-1625 ◽  
Author(s):  
DEANNE M. DEER ◽  
KEITH A. LAMPEL

Shigella species, particularly S. sonnei and S. flexneri, remain some of the leading bacterial etiological agents of gastrointestinal diseases in the United States and globally. The isolation and detection of these foodborne pathogens are critical for preventing the spread of disease and facilitating epidemiological investigations aimed at determining the source of a Shigella infection outbreak. A multiplex real-time PCR-based assay was developed that targets all four species of Shigella plus enteroinvasive Escherichia coli. The assay incorporates primers directed to the ipaH genes located on both the virulence plasmid and chromosome, the plasmid-encoded virulence gene mxiC, a mutated mxiC gene (mxiC::kan) that differentiates wild-type strains from a laboratory control strain, and an internal amplification control. More than 50 isolates of all four Shigella species were tested for inclusivity and specificity of the multiplex PCR assay, and more than 30 non-Shigella isolates were tested for exclusivity of the assay. The sensitivity of the assay was 1 to 3 CFU and 5 to 50 fg of target (total) DNA for the ipaH, mxiC, and mxiC::kan gene targets. The assay performed equally well and with no measurable inhibition in the Shigella target reactions when rinsates of several high-risk produce commodities (parsley, cilantro, alfalfa sprouts, and lettuce) were added to the reactions. This multiplex PCR assay is sensitive and specific and has the added dimension of discriminating all Shigella species from the positive control strain so that in any sample analysis other strains can be excluded as a source of contamination.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 404-410 ◽  
Author(s):  
Danqiong Huang ◽  
Guiping Yan ◽  
Neil Gudmestad ◽  
Weimin Ye ◽  
Jonathan Whitworth ◽  
...  

Four trichodorid species, Paratrichodorus allius, P. minor, P. porosus, and Trichodorus obtusus, were found in multiple states in the United States. Traditional diagnosis based on morphology and morphometrics is laborious and requires an experienced taxonomist. Additionally, end-point diagnosis using PCR was only available for P. allius. To increase diagnostic efficiency and reduce costs, a one-step multiplex PCR assay was developed to simultaneously identify these four species using one PCR reaction. Available sequences of 18S ribosomal DNA and internal transcribed spacer 1 (ITS1) region of these species were aligned and five primers were designed. The conserved forward primer located in the 18S region, in combination with the species-specific antisense primer in the ITS1 region, amplified a single distinctive PCR fragment for each species (421/425 bp for P. allius, 190 bp for P. minor, 513 bp for P. porosus, and 353 bp for T. obtusus). In silico analysis with 10 other trichodorid species and experimental analysis using samples with these four species, 20 other plant-parasitic and three non-plant-parasitic nematodes demonstrated high specificity with the primers designed. The multiplex PCR amplified desirable fragments using a set of artificially mixed templates containing one, two, three, or four targeted species. The reliability of multiplex PCR results was demonstrated by using nematode populations isolated from infested fields from diverse geographic regions in eight states. The multiplex PCR-based tool developed in this study for the first time provides a simple, rapid, and cost-friendly assay for accurate diagnosis of the four major trichodorid nematodes in the United States.


2016 ◽  
Vol 1 (2) ◽  
pp. 38-42 ◽  
Author(s):  
Khairun Nessa ◽  
Dilruba Ahmed ◽  
Johirul Islam ◽  
FM Lutful Kabir ◽  
M Anowar Hossain

A multiplex PCR assay was evaluated for diagnosis of diarrheagenic Escherichia coli in stool samples of patients with diarrhoea submitted to a diagnostic microbiology laboratory. Two procedures of DNA template preparationproteinase K buffer method and the boiling method were evaluated to examine isolates of E. coli from 150 selected diarrhoeal cases. By proteinase K buffer method, 119 strains (79.3%) of E. coli were characterized to various categories by their genes that included 55.5% enteroaggregative E. coli (EAEC), 18.5% enterotoxigenic E. coli (ETEC), 1.7% enteropathogenic E. coli (EPEC), and 0.8% Shiga toxin-producing E. coli (STEC). Although boiling method was less time consuming (<24 hrs) and less costly (<8.0 US $/ per test) but was less efficient in typing E. coli compared to proteinase K method (41.3% vs. 79.3% ; p<0.001). The sensitivity and specificity of boiling method compared to proteinase K method was 48.7% and 87.1% while the positive and negative predictive value was 93.5% and 30.7%, respectively. The majority of pathogenic E. coli were detected in children (78.0%) under five years age with 53.3% under one year, and 68.7% of the children were male. Children under 5 years age were frequently infected with EAEC (71.6%) compared to ETEC (24.3%), EPEC (2.7%) and STEC (1.4%). The multiplex PCR assay could be effectively used as a rapid diagnostic tool for characterization of diarrheagenic E. coli using a single reaction tube in the clinical laboratory setting.Bangladesh J Med Microbiol 2007; 01 (02): 38-42


Author(s):  
Peter Scott

From an international perspective, the inter-war car industry was a British success story. Britain ranked only second to the United States as the world’s leading producer of, and market for, automobiles, owing to a relatively strong domestic market by European standards. However, while consumers’ expenditure was high, it was not deep—car ownership per capita in 1938 being around a third of US levels. This chapter examines why the British automobile sector failed to take off into mass market diffusion. A number of important factors are highlighted, including lower British wages relative to the United States; punitive vehicle and petrol taxation; and the high unit production costs incurred in serving a market too small to justify Fordist mass production. However, a more fundamental reason was the low priority given to car ownership in a relatively small, densely populated, and highly urbanized island nation with well-developed public transport networks.


Author(s):  
Sunarno ◽  
Khariri ◽  
Fauzul Muna ◽  
Kambang Sariadji ◽  
Yuni Rukminiati ◽  
...  

Conservation ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 151-167
Author(s):  
Joseph Tetreault ◽  
Rachel Fogle ◽  
Todd Guerdat

Operation and effluent treatment costs are limiting factors for the success of recirculating aquaculture systems (RAS) in meeting seafood demand in the United States. Adopting a capture-and-reuse waste management model similar to terrestrial agriculture farmers would allow RAS farmers to monetize effluent and offset production costs. The moisture content and nutrient profile of RAS effluent makes it a potential option for use as a hydroponic fertilizer. Treatment of RAS waste is needed to mineralize particulate-bound nutrients before becoming a viable hydroponic nutrient solution. Anaerobic treatment (AT), a method used by municipal and agricultural waste treatment facilities to reduce total solids, has been shown to successfully mineralize particulate-bound nutrients from RAS effluent. Continuously mixed anaerobic batch bioreactors were used to evaluate the degree to which AT may mineralize particulate-bound nutrients in solid RAS waste. Concentrations of twelve different macro- and micro-nutrients were analyzed in the waste before and after treatment. Effluent samples were analyzed to determine the fraction of each nutrient in the solid and aqueous forms. This study showed that AT is an effective method to mineralize particulate-bound nutrients in RAS effluent and the mineralization rate data may be used to design a pilot-scaled flow-through RAS effluent treatment system.


2019 ◽  
Vol 82 (2) ◽  
pp. 325-330 ◽  
Author(s):  
WANWAN LIU ◽  
XIAONAN WANG ◽  
JING TAO ◽  
BANGSHENG XI ◽  
MAN XUE ◽  
...  

ABSTRACT This study aimed to establish a multiplex PCR detection system mediated by “universal primers,” which would be able to determine whether mutton meat contained nonmutton ingredients from rats, foxes, and ducks. Based on the sequence variation of specific mitochondrial genes, nine different multiplex PCR primers were designed, and four kinds of meat products were rapidly identified by electrophoresis using an optimized multiplex PCR system based on the molecular weight differences of the amplified products. Multiplex PCR applications optimized for meat food source from food samples for testing was used to verify the accuracy of the identification method. The results showed that the primers in multiple PCR system mediated by universal primers could be used for the rapid identification of rat, fox, duck, and sheep meat in mutton products, and the detection sensitivity could reach 0.05 ng/μL. The identification of food samples validated the practical value of this method. Therefore, a multiplex PCR system mediated by universal primers was established, which can be used to quickly identify the origin of animal ingredients from rats, foxes, and ducks in mutton products.


2010 ◽  
Vol 105 (2) ◽  
pp. 151-155 ◽  
Author(s):  
Mollah Md. Hamiduzzaman ◽  
Ernesto Guzman-Novoa ◽  
Paul H. Goodwin

Sign in / Sign up

Export Citation Format

Share Document