scholarly journals Strong SARS-CoV-2 N-specific CD8+ T immunity induced by engineered extracellular vesicles associates with protection from lethal infection in mice.

2022 ◽  
Author(s):  
Flavia Ferrantelli ◽  
Chiara Chiozzini ◽  
Francesco Manfredi ◽  
Patrizia Leone ◽  
Massimo Spada ◽  
...  

SARS-CoV-2-specific CD8+ T cell immunity is expected to counteract viral variants in both efficient and durable ways. We recently described a way to induce a potent SARS-CoV-2 CD8+ T immune response through the generation of engineered extracellular vesicles (EVs) emerging from muscle cells. This method relies on intramuscular injection of DNA vectors expressing different SARS-CoV-2 antigens fused at their N-terminus with Nefmut protein, i.e., a very efficient EV-anchoring protein. However, quality, tissue distribution, and efficacy of these SARS-CoV-2-specific CD8+ T cells remained uninvestigated. To fill the gaps, antigen-specific CD8+ T lymphocytes induced by the immunization through the Nefmut-based method were characterized in terms of their polyfunctionality and localization at lung airways, i.e., the primary targets of SARS-CoV-2 infection. We found that injection of vectors expressing Nefmut/S1 and Nefmut/N generated polyfunctional CD8+ T lymphocytes in both spleens and bronchoalveolar lavage fluids (BALFs). When immunized mice were infected with 4.4 lethal doses 50% of SARS-CoV-2, all S1-immunized mice succumbed, whereas those developing the highest percentages of N-specific CD8+ T lymphocytes resisted the lethal challenge. We also provide evidence that the N-specific immunization coupled with the development of antigen-specific CD8+ T-resident memory cells in lungs, supporting the idea that the Nefmut-based immunization can confer a long-lasting, lung-specific immune memory. In view of the limitations of current anti-SARS-CoV-2 vaccines in terms of antibody waning and efficiency against variants, our CD8+ T cell-based platform could be considered for a new combination prophylactic strategy.

2010 ◽  
Vol 207 (6) ◽  
pp. 1283-1292 ◽  
Author(s):  
Karine Crozat ◽  
Rachel Guiton ◽  
Vanessa Contreras ◽  
Vincent Feuillet ◽  
Charles-Antoine Dutertre ◽  
...  

Human BDCA3+ dendritic cells (DCs) were suggested to be homologous to mouse CD8α+ DCs. We demonstrate that human BDCA3+ DCs are more efficient than their BDCA1+ counterparts or plasmacytoid DCs (pDCs) in cross-presenting antigen and activating CD8+ T cells, which is similar to mouse CD8α+ DCs as compared with CD11b+ DCs or pDCs, although with more moderate differences between human DC subsets. Yet, no specific marker was known to be shared between homologous DC subsets across species. We found that XC chemokine receptor 1 (XCR1) is specifically expressed and active in mouse CD8α+, human BDCA3+, and sheep CD26+ DCs and is conserved across species. The mRNA encoding the XCR1 ligand chemokine (C motif) ligand 1 (XCL1) is selectively expressed in natural killer (NK) and CD8+ T lymphocytes at steady-state and is enhanced upon activation. Moreover, the Xcl1 mRNA is selectively expressed at high levels in central memory compared with naive CD8+ T lymphocytes. Finally, XCR1−/− mice have decreased early CD8+ T cell responses to Listeria monocytogenes infection, which is associated with higher bacterial loads early in infection. Therefore, XCR1 constitutes the first conserved specific marker for cell subsets homologous to mouse CD8α+ DCs in higher vertebrates and promotes their ability to activate early CD8+ T cell defenses against an intracellular pathogenic bacteria.


2016 ◽  
Vol 88 (11) ◽  
pp. 22-28
Author(s):  
K V Shmagel ◽  
N G Shmagel ◽  
L B Korolevskaya ◽  
E V Saydakova ◽  
V A Chereshnev

Aim. To establish the causes of T lymphocyte activation in human immunodeficiency virus (HIV)-infected patients coinfected with hepatitis C (HCV) who are adherent to their antiretroviral therapy regimen and interferon untreated. Subjects and methods. Examinations were made in 62 people who were HIV+HCV-positive (n=21), HIV+HCV-negative (n=21), and noninfected volunteers (n=20). The activation (CD38+HLA-DR+) and proliferation (Ki-67+) of CD4+ and CD8+ T lymphocytes were estimated. The blood concentration of intestinal fatty acid-binding protein (I-FABP) was determined. Results. The proportion of activated cells among the CD4+ T lymphocytes was equal in the HIV+HCV-positive and HIV+HCV-negative groups. But these indicators were statistically significantly higher than those in the controls (HIV- HCV-). CD8+ T cell activation was greater in the HIV/HCV-coinfected patients than that in the other groups and that was higher in the HIV monoinfected than in the noninfected. The blood I-FABP concentrations were elevated in the HIV+HCV-positive and HIV+HCV groups compared with those in the HIV-HCV-negative group, but these did not differ among themselves. In the HIV+HCV-negative patients, CD4+ and CD8+ T cell activation directly and statistically significantly correlated with blood I-FABP levels. In the HIV+HCV-positive group, this correlation remained only for CD4+ T lymphocytes. CD8+ T cell activation in HIV/HCV-coinfected patients was unrelated to I-FABP concentrations. Conclusion. The increased activation of CD4+ and CD8+ T lymphocytes in HIV monoinfection was found to be associated with intestinal epithelial destruction and unrelated to cell division processes. In HIV/HCV coinfection, the activated state of CD4+ T cells is determined by both the level of proliferative processes and impairment of the intestinal barrier and that of CD8+ T cells is only by proliferation.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 373
Author(s):  
Chiara Chiozzini ◽  
Francesco Manfredi ◽  
Flavia Ferrantelli ◽  
Patrizia Leone ◽  
Andrea Giovannelli ◽  
...  

Intramuscular injection of DNA vectors expressing the extracellular vesicle (EV)-anchoring protein Nefmut fused at its C-terminus to viral and tumor antigens elicit a potent, effective, and anti-tolerogenic CD8+ T cell immunity against the heterologous antigen. The immune response is induced through the production of EVs incorporating Nefmut-derivatives released by muscle cells. In the perspective of a possible translation into the clinic of the Nefmut-based vaccine platform, we aimed at increasing its safety profile by identifying the minimal part of Nefmut retaining the EV-anchoring protein property. We found that a C-terminal deletion of 29-amino acids did not affect the ability of Nefmut to associate with EVs. The EV-anchoring function was also preserved when antigens from both HPV16 (i.e., E6 and E7) and SARS-CoV-2 (i.e., S1 and S2) were fused to its C-terminus. Most important, the Nefmut C-terminal deletion did not affect levels, quality, and diffusion at distal sites of the antigen-specific CD8+ T immunity. We concluded that the C-terminal Nefmut truncation does not influence stability, EV-anchoring, and CD8+ T cell immunogenicity of the fused antigen. Hence, the C-terminal deleted Nefmut may represent a safer alternative to the full-length isoform for vaccines in humans.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2263
Author(s):  
Flavia Ferrantelli ◽  
Francesco Manfredi ◽  
Chiara Chiozzini ◽  
Patrizia Leone ◽  
Andrea Giovannelli ◽  
...  

We developed an innovative method to induce antigen-specific CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). This approach employs a DNA vector expressing a mutated HIV-1 Nef protein (Nefmut) deprived of the anti-cellular effects typical of the wild-type isoform, meanwhile showing an unusual efficiency of incorporation into EVs. This function persists even when foreign antigens are fused to its C-terminus. In this way, Nefmut traffics large amounts of antigens fused to it into EVs spontaneously released by the recipient cells. We previously provided evidence that mice injected with a DNA vector expressing the Nefmut/HPV16-E7 fusion protein developed an E7-specific CTL immune response as detected 2 weeks after the second immunization. Here, we extended and optimized the anti-HPV16 CD8+ T cell immune response induced by the endogenously engineered EVs, and evaluated the therapeutic antitumor efficacy over time. We found that the co-injection of DNA vectors expressing Nefmut fused with E6 and E7 generated a stronger anti-HPV16 immune response compared to that observed in mice injected with the single vectors. When HPV16-E6 and -E7 co-expressing tumor cells were implanted before immunization, all mice survived at day 44, whereas no mice injected with either void or Nefmut-expressing vectors survived until day 32 after tumor implantation. A substantial part of immunized mice (7 out of 12) cleared the tumor. When the cured mice were re-challenged with a second tumor cell implantation, none of them developed tumors. Both E6- and E7-specific CD8+ T immunities were still detectable at the end of the observation time. We concluded that the immunity elicited by engineered EVs, besides counteracting and curing already developed tumors, was strong enough to guarantee the resistance to additional tumor attacks. These results can be of relevance for the therapy of both metastatic and relapsing tumors.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 240 ◽  
Author(s):  
Flavia Ferrantelli ◽  
Chiara Chiozzini ◽  
Francesco Manfredi ◽  
Andrea Giovannelli ◽  
Patrizia Leone ◽  
...  

Most advanced vaccines against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 are designed to induce antibodies against spike (S) protein. Differently, we developed an original strategy to induce CD8+ T cytotoxic lymphocyte (CTL) immunity based on in vivo engineering of extracellular vesicles (EVs). This is a new vaccination approach based on intramuscular injection of DNA expression vectors coding for a biologically inactive HIV-1 Nef protein (Nefmut) with an unusually high efficiency of incorporation into EVs, even when foreign polypeptides are fused to its C-terminus. Nanovesicles containing Nefmut-fused antigens released by muscle cells can freely circulate into the body and are internalized by antigen-presenting cells. Therefore, EV-associated antigens can be cross-presented to prime antigen-specific CD8+ T-cells. To apply this technology to a strategy of anti-SARS-CoV-2 vaccine, we designed DNA vectors expressing the products of fusion between Nefmut and different viral antigens, namely N- and C-terminal moieties of S (referred to as S1 and S2), M, and N. We provided evidence that all fusion products are efficiently uploaded in EVs. When the respective DNA vectors were injected in mice, a strong antigen-specific CD8+ T cell immunity became detectable in spleens and, most important, in lung airways. Co-injection of DNA vectors expressing the diverse SARS-CoV-2 antigens resulted in additive immune responses in both spleen and lungs. Hence, DNA vectors expressing Nefmut-based fusion proteins can be proposed for new anti-SARS-CoV-2 vaccine strategies.


2004 ◽  
Vol 10 (14) ◽  
pp. 4754-4760 ◽  
Author(s):  
Monique van Oijen ◽  
Adriaan Bins ◽  
Sjoerd Elias ◽  
Johan Sein ◽  
Pauline Weder ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan D. Pardy ◽  
Stefanie F. Valbon ◽  
Brendan Cordeiro ◽  
Connie M. Krawczyk ◽  
Martin J. Richer

AbstractZika virus (ZIKV) has emerged as an important global health threat, with the recently acquired capacity to cause severe neurological symptoms and to persist within host tissues. We previously demonstrated that an early Asian lineage ZIKV isolate induces a highly activated CD8 T cell response specific for an immunodominant epitope in the ZIKV envelope protein in wild-type mice. Here we show that a contemporary ZIKV isolate from the Brazilian outbreak severely limits CD8 T cell immunity in mice and blocks generation of the immunodominant CD8 T cell response. This is associated with a more sustained infection that is cleared between 7- and 14-days post-infection. Mechanistically, we demonstrate that infection with the Brazilian ZIKV isolate reduces the cross-presentation capacity of dendritic cells and fails to fully activate the immunoproteasome. Thus, our study provides an isolate-specific mechanism of host immune evasion by one Brazilian ZIKV isolate, which differs from the early Asian lineage isolate and provides potential insight into viral persistence associated with recent ZIKV outbreaks.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii472-iii472
Author(s):  
Mubeen Mosaheb ◽  
Daniel Landi ◽  
Elena Dobrikova ◽  
Michael Brown ◽  
Yuanfan Yang ◽  
...  

Abstract BACKGROUND H3 K27M-mutant diffuse midline glioma (DMG) is invariably lethal. Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses, in particular, are uniquely tropic for dendritic cells (DC) and potently activate DC, inducing Th1-dominant cytokine profiles, CD8 T cell immunity, and enhanced epitope presentation. Thus, poliovirus is ideally suited for vectored delivery of signature tumor neoantigens, e.g. the H3 K27M feature of DMG. However, poliovirus vector design is inherently limited by genetic instability and the underlying neuropathogenicity of poliovirus. METHODS We created a genetically stable, polio:rhinovirus chimera vector devoid of neuropathogenicity and modified for stable expression of the HLA-A2 restricted H3.3 K27M antigen (RIPO (H3.3)). RESULTS RIPO(H3.3) infects, activates, and induces H3.3K27M antigen presentation in DCs in vitro. Given intramuscularly in vivo, RIPO(H3.3) recruits and activates DCs with Th1-dominant cytokine profiles, efficiently primes H3.3K27M-specific CD8 T cells, induces antigen-specific CD8 T cell migration to the tumor site, delays tumor growth, and enhances survival in murine tumor models. CONCLUSION This novel approach leverages the unique ability of polioviruses to activate DCs while simultaneously introducing the H3.3 K27M antigen. In this way, DCs are activated optimally in situ, while being simultaneously infected to express/present tumor antigen. RIPO(H3.3), given by intramuscular injection, will be evaluated in a clinical trial for children with H3 K27M-mutant diffuse midline glioma.


Sign in / Sign up

Export Citation Format

Share Document