scholarly journals Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms

2022 ◽  
Author(s):  
Raven L Bier ◽  
Máté Vass ◽  
Anna J Székely ◽  
Silke Langenheder

Understanding processes that determine community membership and abundance is important for many fields from theoretical community ecology to conservation. However, spatial community studies are often conducted only at a single timepoint despite the known influence of temporal variability on community assembly processes. Here we used a spatiotemporal study to determine how environmental fluctuation differences induced by mesocosm volumes (larger volumes were more stable) influence assembly processes of aquatic bacterial metacommunities along a press disturbance gradient. By combining path analysis and network approaches, we found mesocosm size categories had distinct relative influences of assembly process and environmental factors that determined spatiotemporal bacterial community composition, including dispersal and species sorting by conductivity. These processes depended on, but were not affected proportionately by, mesocosm size. Low fluctuation, large mesocosms primarily developed through the interplay of species sorting that became more important over time and transient priority effects as evidenced by more time-delayed associations. High fluctuation, small mesocosms had regular disruptions to species sorting and greater importance of ecological drift and dispersal limitation indicated by lower richness and higher taxa replacement. Together, these results emphasize that environmental fluctuations influence ecosystems over time and its impacts are modified by biotic properties intrinsic to ecosystem size.

Ecology ◽  
2011 ◽  
Vol 92 (12) ◽  
pp. 2267-2275 ◽  
Author(s):  
Joachim Mergeay ◽  
Luc De Meester ◽  
Hilde Eggermont ◽  
Dirk Verschuren

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Muhammad Farooq ◽  
Xianfu Li ◽  
Zhengfei Li ◽  
Ronglong Yang ◽  
Zhen Tian ◽  
...  

While macroinvertebrates are extensively investigated in many river ecosystems, meta-community ecology perspectives in alpine streams are very limited. We assessed the role of ecological factors and temporal dynamics in the macroinvertebrate meta-community assembly of an alpine stream situated in a dry-hot valley of Baima Snow Mountain, China. We found that spatial structuring and environmental filtering jointly drive the structure of macroinvertebrate meta-community, with relative contributions to the variance in community composition changing over time. RDA ordination and variation partitioning indicate that environmental variables are the most important predictors of community organization in most scenarios, whereas spatial determinants also play a significant role. Moreover, the explanatory power, identity, and the relative significance of ecological factors change over time. Particularly, in the years 2018 and 2019, stronger environmental filtering was found shaping community assembly, suggesting that deterministic mechanisms predominated in driving community dynamics. However, spatial factors had a stronger predictive power on meta-community structures in 2017, implying conspicuous dispersal mechanisms which may be owing to increased connectivity amongst sites. Thereby, we inferred that the alpine stream macroinvertebrate metacommunity composition can be regulated by the interaction of both spatial processes and environmental filtering, with relative contributions varying over time. Based on these findings, we suggest that community ecology studies in aquatic systems should be designed beyond single snapshot investigations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yuanlong Li ◽  
Chunxiang Hu

AbstractBiocrusts play critical eco-functions in many drylands, however it is challenging to explore their community assembly, particularly within patched successional types and across climate zones. Here, different successional biocrusts (alga, lichen, and moss-dominated biocrusts) were collected across the northern China, and assembly of biocrust microbial communities was investigated by high-throughput sequencing combined with measurements of soil properties and microclimate environments. Bacterial and eukaryotic communities showed that the maximum and minimum community variation occurred across longitude and latitude, respectively. In the regions where all three stages of biocrusts were involved, the highest community difference existed between successional stages, and decreased with distance. The community assembly was generally driven by dispersal limitation, although neutral processes have controlled the eukaryotic community assembly in hyperarid areas. Along the succession, bacterial community had no obvious patterns, but eukaryotic community showed increasing homogeneity, with increased species sorting and decreased dispersal limitation for community assembly. Compared to early successional biocrusts, there were higher microbial mutual exclusions and more complex networks at later stages, with distinct topological features. Correlation analysis further indicated that the balance between deterministic and stochastic processes might be mediated by aridity, salinity, and total phosphorus, although the mediations were opposite for bacteria and eukaryotes.


Microbiome ◽  
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Francesco Ricci ◽  
Vanessa Rossetto Marcelino ◽  
Linda L. Blackall ◽  
Michael Kühl ◽  
Mónica Medina ◽  
...  

AbstractCoral microbial ecology is a burgeoning field, driven by the urgency of understanding coral health and slowing reef loss due to climate change. Coral resilience depends on its microbiota, and both the tissue and the underlying skeleton are home to a rich biodiversity of eukaryotic, bacterial and archaeal species that form an integral part of the coral holobiont. New techniques now enable detailed studies of the endolithic habitat, and our knowledge of the skeletal microbial community and its eco-physiology is increasing rapidly, with multiple lines of evidence for the importance of the skeletal microbiota in coral health and functioning. Here, we review the roles these organisms play in the holobiont, including nutritional exchanges with the coral host and decalcification of the host skeleton. Microbial metabolism causes steep physico-chemical gradients in the skeleton, creating micro-niches that, along with dispersal limitation and priority effects, define the fine-scale microbial community assembly. Coral bleaching causes drastic changes in the skeletal microbiome, which can mitigate bleaching effects and promote coral survival during stress periods, but may also have detrimental effects. Finally, we discuss the idea that the skeleton may function as a microbial reservoir that can promote recolonization of the tissue microbiome following dysbiosis and help the coral holobiont return to homeostasis.


Author(s):  
Brian J. Wilsey

Conservation programs alter herbivore stocking rates and find and protect the remaining areas that have not been plowed or converted to crops. Restoration is an ‘Acid Test’ for ecology. If we fully understand how grassland systems function and assemble after disturbance, then it should be easy to restore them after they have been degraded or destroyed. Alternatively, the idea that restorations will not be equivalent to remnants has been termed the ‘Humpty Dumpty’ hypothesis—once lost, it cannot be put back together again. Community assembly may follow rules, and if these rules are uncovered, then we may be able to accurately predict final species composition after assembly. Priority effects are sometimes found depending on species arrival orders, and they can result in alternate states. Woody plant encroachment is the increase in density and biomass of woody plants, and it is strongly affecting grassland C and water cycles.


Author(s):  
Thomas L Rodebaugh ◽  
Madelyn R Frumkin ◽  
Angela M Reiersen ◽  
Eric J Lenze ◽  
Michael S Avidan ◽  
...  

Abstract Background The symptoms of COVID-19 appear to be heterogenous, and the typical course of these symptoms is unknown. Our objectives were to characterize the common trajectories of COVID-19 symptoms and assess how symptom course predicts other symptom changes as well as clinical deterioration. Methods 162 participants with acute COVID-19 responded to surveys up to 31 times for up to 17 days. Several statistical methods were used to characterize the temporal dynamics of these symptoms. Because nine participants showed clinical deterioration, we explored whether these participants showed any differences in symptom profiles. Results Trajectories varied greatly between individuals, with many having persistently severe symptoms or developing new symptoms several days after being diagnosed. A typical trajectory was for a symptom to improve at a decremental rate, with most symptoms still persisting to some degree at the end of the reporting period. The pattern of symptoms over time suggested a fluctuating course for many patients. Participants who showed clinical deterioration were more likely to present with higher reports of severity of cough and diarrhea. Conclusion The course of symptoms during the initial weeks of COVID-19 is highly heterogeneous and is neither predictable nor easily characterized using typical survey methods. This has implications for clinical care and early-treatment clinical trials. Additional research is needed to determine whether the decelerating improvement pattern seen in our data is related to the phenomenon of patients reporting long-term symptoms, and whether higher symptoms of diarrhea in early illness presages deterioration.


Author(s):  
Mari Huhtala ◽  
Muel Kaptein ◽  
Joona Muotka ◽  
Taru Feldt

AbstractThe aim of this longitudinal study was to investigate the temporal dynamics of ethical organisational culture and how it associates with well-being at work when potential changes in ethical culture are measured over an extended period of 6 years. We used a person-centred study design, which allowed us to detect both typical and atypical patterns of ethical culture stability as well as change among a sample of leaders. Based on latent profile analysis and hierarchical linear modelling we found longitudinal, concurrent relations and cumulative gain and loss cycles between different ethical culture patterns and leaders’ well-being. Leaders in the strongest ethical culture pattern experienced the highest level of work engagement and a decreasing level of ethical dilemmas and stress. Leaders who gave the lowest ratings on ethical culture which also decreased over time reported the highest level of ethical dilemmas, stress, and burnout. They also showed a continuous increase in these negative outcomes over time. Thus, ethical culture has significant cumulative effects on well-being, and these longitudinal effects can be both negative and positive, depending on the experienced strength of the culture’s ethicality.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Sung Kim ◽  
Seok Hyun Ahn ◽  
In Jae Jeong ◽  
Tae Kwon Lee

AbstractThe metacommunity approach provides insights into how the biological communities are assembled along the environmental variations. The current study presents the importance of water quality on the metacommunity structure of algal communities in six river-connected lakes using long-term (8 years) monitoring datasets. Elements of metacommunity structure were analyzed to evaluate whether water quality structured the metacommunity across biogeographic regions in the riverine ecosystem. The algal community in all lakes was found to exhibit Clementsian or quasi-Clementsian structure properties such as significant turnover, grouped and species sorting indicating that the communities responded to the environmental gradient. Reciprocal averaging clearly classified the lakes into three clusters according to the geographical region in river flow (upstream, midstream, and downstream). The dispersal patterns of algal genera, including Aulacoseira, Cyclotella, Stephanodiscus, and Chlamydomonas across the regions also supported the spatial-based classification results. Although conductivity, chemical oxygen demand, and biological oxygen demand were found to be important variables (loading > |0.5|) of the entire algal community assembly, water temperature was a critical factor in water quality associated with community assembly in each geographical area. These results support the notion that the structure of algal communities is strongly associated with water quality, but the relative importance of variables in structuring algal communities differed by geological regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Kalenitchenko ◽  
Erwan Peru ◽  
Pierre E. Galand

AbstractPredicting ecosystem functioning requires an understanding of the mechanisms that drive microbial community assembly. Many studies have explored microbial diversity extensively and environmental factors are thought to be the principal drivers of community composition. Community assembly is, however, also influenced by past conditions that might affect present-day assemblages. Historical events, called legacy effects or historical contingencies, remain poorly studied in the sea and their impact on the functioning of the communities is not known. We tested the influence, if any, of historical contingencies on contemporary community assembly and functions in a marine ecosystem. To do so, we verified if different inoculum communities colonizing the same substrate led to communities with different compositions. We inoculated wood with sea water microbes from different marine environments that differ in ecological and evolutionary history. Using 16S rRNA and metagenomic sequencing, it was demonstrated that historical contingencies change the composition and potential metabolisms of contemporary communities. The effect of historical events was transient, dominated by environmental selection as, over time, species sorting was a more important driver of community assembly. Our study shows not only that historical contingencies affect marine ecosystems but takes the analysis a step further by characterizing this effect as strong but transient.


Sign in / Sign up

Export Citation Format

Share Document