scholarly journals Optimal experimental designs for estimating genetic and non-genetic effects underlying infectious disease transmission

2022 ◽  
Author(s):  
Christopher Mark Pooley ◽  
Glenn Marion ◽  
Andrea Doeschl-Wilson

BACKGROUND: Infectious disease spread in populations is controlled by individuals' susceptibility (propensity to acquire infection), infectivity (propensity to pass on infection to others) and recoverability (propensity to recover/die). Estimating the effects of genetic risk factors on these host epidemiological traits can help reduce disease spread through genetic control strategies. However, the effects of previously identified "disease resistance SNPs" on these epidemiological traits are usually unknown. Recent advances in computational statistics make it now possible to estimate the effects of single nucleotide polymorphisms (SNPs) on these traits from longitudinal epidemic data (e.g. infection and/or recovery times of individuals or diagnostic test results). However, little is known how to optimally design disease transmission experiments or field studies to maximise the precision at which pleiotropic SNP effects estimates for susceptibility, infectivity and recoverability can be estimated. RESULTS: We develop and validate analytical expressions for the precision of SNP effects estimates on the three host traits assuming a disease transmission experiment with one or more non-interacting contact groups. Maximising these leads to three distinct "experimental" designs, each specifying a different set of ideal SNP genotype compositions across groups: a) appropriate for a single contact-group, b) a multi-group design termed "pure", and c) a multi-group design termed "mixed", where "pure" and "mixed" refer to contact groups consisting of individuals with the same or different SNP genotypes, respectively. Precision estimates for susceptibility and recoverability were found to be less sensitive to the experimental design than infectivity. Data from multiple groups were found more informative about infectivity effects than from a single group containing the same number of individuals. Whilst the analytical expressions suggest that the multi-group pure and mixed designs estimate SNP effects with similar precision, the mixed design is preferable because it uses information from naturally occurring infections rather than those artificially induced. The same optimal design principles apply to estimating other categorical fixed effects, such as vaccinations status, helping to more effectively quantify their epidemiological impact. An online software tool SIRE-PC has been developed which calculates the precision of estimated substitution and dominance effects of a single SNP (or vaccine status) associated with all three traits depending on experimental design parameters. CONCLUSIONS: The developed methodology and software tool can be used to aid the design of disease transmission experiments for estimating the effect of individual SNPs and other categorical variables underlying host susceptibility, infectivity and recoverability.

2020 ◽  
Vol 16 (12) ◽  
pp. e1008447
Author(s):  
Christopher M. Pooley ◽  
Glenn Marion ◽  
Stephen C. Bishop ◽  
Richard I. Bailey ◽  
Andrea B. Doeschl-Wilson

Individuals differ widely in their contribution to the spread of infection within and across populations. Three key epidemiological host traits affect infectious disease spread: susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection to others) and recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread may target improvement in any one of these traits, but the necessary statistical methods for obtaining risk estimates are lacking. In this paper we introduce a novel software tool called SIRE (standing for “Susceptibility, Infectivity and Recoverability Estimation”), which allows for the first time simultaneous estimation of the genetic effect of a single nucleotide polymorphism (SNP), as well as non-genetic influences on these three unobservable host traits. SIRE implements a flexible Bayesian algorithm which accommodates a wide range of disease surveillance data comprising any combination of recorded individual infection and/or recovery times, or disease diagnostic test results. Different genetic and non-genetic regulations and data scenarios (representing realistic recording schemes) were simulated to validate SIRE and to assess their impact on the precision, accuracy and bias of parameter estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, accurate parameter estimates associated with all three host traits. For most scenarios, SNP effects associated with recoverability can be estimated with highest precision, followed by susceptibility. For infectivity, many epidemics with few individuals give substantially more statistical power to identify SNP effects than the reverse. Importantly, precise estimates of SNP and other effects could be obtained even in the case of incomplete, censored and relatively infrequent measurements of individuals’ infection or survival status, albeit requiring more individuals to yield equivalent precision. SIRE represents a new tool for analysing a wide range of experimental and field disease data with the aim of discovering and validating SNPs and other factors controlling infectious disease transmission.


2015 ◽  
Vol 370 (1669) ◽  
pp. 20140107 ◽  
Author(s):  
Meggan E. Craft

The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools.


2017 ◽  
Author(s):  
Pratha Sah ◽  
Michael Otterstatter ◽  
Stephan T. Leu ◽  
Sivan Leviyang ◽  
Shweta Bansal

AbstractThe spread of pathogens fundamentally depends on the underlying contacts between individuals. Modeling infectious disease dynamics through contact networks is sometimes challenging, however, due to a limited understanding of pathogen transmission routes and infectivity. We developed a novel tool, INoDS (Identifying Network models of infectious Disease Spread) that estimates the predictive power of empirical contact networks to explain observed patterns of infectious disease spread. We show that our method is robust to partially sampled contact networks, incomplete disease information, and enables hypothesis testing on transmission mechanisms. We demonstrate the applicability of our method in two host-pathogen systems: Crithidia bombi in bumble bee colonies and Salmonella in wild Australian sleepy lizard populations. The performance of INoDS in synthetic and complex empirical systems highlights its role in identifying transmission pathways of novel or neglected pathogens, as an alternative approach to laboratory transmission experiments, and overcoming common data-collection constraints.


2020 ◽  
Vol 34 (4) ◽  
pp. 79-104
Author(s):  
Christopher Avery ◽  
William Bossert ◽  
Adam Clark ◽  
Glenn Ellison ◽  
Sara Fisher Ellison

We describe the structure and use of epidemiology models of disease transmission, with an emphasis on the susceptible/infected/recovered (SIR) model. We discuss high-profile forecasts of cases and deaths that have been based on these models, what went wrong with the early forecasts, and how they have adapted to the current COVID pandemic. We also offer three distinct areas where economists would be well positioned to contribute to or inform this epidemiology literature: modeling heterogeneity of susceptible populations in various dimensions, accommodating endogeneity of the parameters governing disease spread, and helping to understand the importance of political economy issues in disease suppression.


2019 ◽  
Author(s):  
Christopher M. Pooley ◽  
Glenn Marion ◽  
Stephen C. Bishop ◽  
Richard I. Bailey ◽  
Andrea B. Doeschl-Wilson

AbstractIndividuals differ widely in their contribution to the spread of infection within and across populations. Three key epidemiological host traits affect infectious disease spread: susceptibility (propensity to acquire infection), infectivity (propensity to transmit infection to others) and recoverability (propensity to recover quickly). Interventions aiming to reduce disease spread may target improvement in any one of these traits, but the necessary statistical methods for obtaining risk estimates are lacking. In this paper we introduce a novel software tool called SIRE (standing for “Susceptibility, Infectivity and Recoverability Estimation”), which allows simultaneous estimation of the genetic effect of a single nucleotide polymorphism (SNP), as well as non-genetic influences on these three unobservable host traits. SIRE implements a flexible Bayesian algorithm which accommodates a wide range of disease surveillance data comprising any combination of recorded individual infection and/or recovery times, or disease status measurements. Different genetic and non-genetic regulations and data scenarios (representing realistic recording schemes) were simulated to validate SIRE and to assess their impact on the precision, accuracy and bias of parameter estimates. This analysis revealed that with few exceptions, SIRE provides unbiased, accurate parameter estimates associated with all three host traits. For most scenarios, SNP effects associated with recoverability can be estimated with highest precision, followed by susceptibility. For infectivity, many epidemics with few individuals give substantially more statistical power to identify SNP effects than the reverse. Importantly, precise estimates of SNP and other effects could be obtained even in the case of incomplete, censored and relatively infrequent measurements of individuals’ infection or survival status, albeit requiring more individuals to yield equivalent precision. SIRE represents a new tool for analysing a wide range of experimental and field disease data with the aim of discovering and validating SNPs and other factors controlling infectious disease transmission.


2020 ◽  
Author(s):  
Angela Maria Cadavid Restrepo ◽  
Luis Furuya-Kanamori ◽  
Helen Mayfield ◽  
Eric J. Nilles ◽  
Colleen L. Lau

2020 ◽  
Vol 14 ◽  
Author(s):  
Osama Bedair

Background: Modular steel buildings (MSB) are extensively used in petrochemical plants and refineries. Limited guidelines are available in the industry for analysis and design of (MSB) subject to accidental vapor cloud explosions (VCEs). Objectives: The paper presents simplified engineering model for modular steel buildings (MSB) subject to accidental vapor cloud explosions (VCEs) that are extensively used in petrochemical plants and refineries. Method: A Single degree of freedom (SDOF) dynamic model is utilized to simulate the dynamic response of primary building components. Analytical expressions are then provided to compute the dynamic load factors (DLF) for critical building elements. Recommended foundation systems are also proposed to install the modular building with minimum cost. Results: Numerical results are presented to illustrate the dynamic response of (MSB) subject to blast loading. It is shown that (DLF)=1.6 is attained at (td/t)=0.4 for front wall (W1) with (td/T)=1.25. For side walls (DLF)=1.41 and is attained at (td/t)=0.6. Conclusions: The paper presented simplified tools for analysis and design of (MSB) subject accidental vapor cloud blast explosions (VCEs). The analytical expressions can be utilized by practitioners to compute the (MSB) response and identify the design parameters. They are simple to use compared to Finite Element Analysis.


Author(s):  
Issaura Sherly Pamela ◽  
Muhammad Rusdi ◽  
Asrial Asrial

Innovation is needed in learning to make meaningful learning, so the student constructs their ownknowledge from the learning experience of learning process. One of the innovations is to integrate Problem Based Learning model. Problem Based Learning involves students to be active in every problem. Eleven problems type in Problem Based Learning that have different solving steps, due to every student different metacognition character potential and can change by given treatment. This research is a pre-experimental design: the pretest-posttest control and experimental group design with embedded experimental design. The metacognition character data were analyzed qualitaively, whereas the average grade data were analyzed quantitatively. The analysis of metacognition character shows the different metacognition characters and on learning process there is improvement of student achievement from 14% to 84.4%.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruaridh A. Clark ◽  
Malcolm Macdonald

AbstractContact networks provide insights on disease spread due to the duration of close proximity interactions. For systems governed by consensus dynamics, network structure is key to optimising the spread of information. For disease spread over contact networks, the structure would be expected to be similarly influential. However, metrics that are essentially agnostic to the network’s structure, such as weighted degree (strength) centrality and its variants, perform near-optimally in selecting effective spreaders. These degree-based metrics outperform eigenvector centrality, despite disease spread over a network being a random walk process. This paper improves eigenvector-based spreader selection by introducing the non-linear relationship between contact time and the probability of disease transmission into the assessment of network dynamics. This approximation of disease spread dynamics is achieved by altering the Laplacian matrix, which in turn highlights why nodes with a high degree are such influential disease spreaders. From this approach, a trichotomy emerges on the definition of an effective spreader where, for susceptible-infected simulations, eigenvector-based selections can either optimise the initial rate of infection, the average rate of infection, or produce the fastest time to full infection of the network. Simulated and real-world human contact networks are examined, with insights also drawn on the effective adaptation of ant colony contact networks to reduce pathogen spread and protect the queen ant.


Sign in / Sign up

Export Citation Format

Share Document