scholarly journals NNeurite: artificial neuronal networks for the unsupervised extraction of axonal and dendritic time-lapse signals

2022 ◽  
Author(s):  
Nicolas Chenouard ◽  
Vladimir Kouskoff ◽  
Richard W Tsien ◽  
Frédéric Gambino

Fluorescence microscopy of Ca2+ transients in small neurites of the behaving mouse provides an unprecedented view of the micrometer-scale mechanisms supporting neuronal communication and computation, and therefore opens the way to understanding their role in cognition. However, the exploitation of this growing and precious experimental data is impeded by the scarcity of methods dedicated to the analysis of images of neurites activity in vivo. We present NNeurite, a set of mathematical and computational techniques specialized for the analysis of time-lapse microscopy images of neurite activity in small behaving animals. Starting from noisy and unstable microscopy images containing an unknown number of small neurites, NNeurite simultaneously aligns images, denoises signals and extracts the location and the temporal activity of the sources of Ca2+ transients. At the core of NNeurite is a novel artificial neuronal network(NN) which we have specifically designed to solve the non-negative matrix factorization (NMF)problem modeling source separation in fluorescence microscopy images. For the first time, we have embedded non-rigid image alignment in the NMF optimization procedure, hence allowing to stabilize images based on the transient and weak neurite signals. NNeurite processing is free of any human intervention as NN training is unsupervised and the unknown number of Ca2+ sources is automatically obtained by the NN-based computation of a low-dimensional representation of time-lapse images. Importantly, the spatial shapes of the sources of Ca2+ fluorescence are not constrained in NNeurite, which allowed to automatically extract the micrometer-scale details of dendritic and axonal branches, such dendritic spines and synaptic boutons, in the cortex of behaving mice. We provide NNeurite as a free and open-source library to support the efforts of the community in advancing in vivo microscopy of neurite activity.

2018 ◽  
Author(s):  
Saoirse Amarteifio ◽  
Todd Fallesen ◽  
Gunnar Pruessner ◽  
Giovanni Sena

AbstractBackgroundParticle-tracking in 3D is an indispensable computational tool to extract critical information on dynamical processes from raw time-lapse imaging. This is particularly true with in vivo time-lapse fluorescence imaging in cell and developmental biology, where complex dynamics are observed at high temporal resolution. Common tracking algorithms used with time-lapse data in fluorescence microscopy typically assume a continuous signal where background, recognisable keypoints and independently moving objects of interest are permanently visible. Under these conditions, simple registration and identity management algorithms can track the objects of interest over time. In contrast, here we consider the case of transient signals and objects whose movements are constrained within a tissue, where standard algorithms fail to provide robust tracking.ResultsTo optimize 3D tracking in these conditions, we propose the merging of registration and tracking tasks into a fuzzy registration algorithm to solve the identity management problem. We describe the design and application of such an algorithm, illustrated in the domain of plant biology, and make it available as an open-source software implementation. The algorithm is tested on mitotic events in 4D data-sets obtained with light-sheet fluorescence microscopy on growing Arabidopsis thaliana roots expressing CYCB::GFP. We validate the method by comparing the algorithm performance against both surrogate data and manual tracking.ConclusionThis method fills a gap in existing tracking techniques, following mitotic events in challenging data-sets using transient fluorescent markers in unregistered images.


2021 ◽  
pp. 15-41
Author(s):  
Hanyi Yu ◽  
Sung Bo Yoon ◽  
Robert Kauffman ◽  
Jens Wrammert ◽  
Adam Marcus ◽  
...  

2021 ◽  
Author(s):  
Slo-Li Chu ◽  
Kuniya Abe ◽  
Hideo Yokota ◽  
Ming-Dar Tsai

Abstract Purpose Embryonic stem (ES) cells represent as a cellular resource for basic biological studies and for their uses as medically relevant cells in in vitro studies. Fluorescence microscopy images taken during cell culture are frequently used to manually monitor time-series morphology changes and status transitions of ES cell (ESC) colonies, and to study dynamical pattern formation and heterogeneity distribution within ESC colonies, intrinsic fluctuation and cell-cell cooperativity. Therefore, tracking and furthermore predicting morphology changes and status transitions of ESC colonies is an effective method to monitor culture medium for maintaining ES cells in undifferentiated or early differentiated stage. Methods A P-LSTM (Progressive Long Short-Term Memory) structure is proposed to incorporate some new time-lapse images real-time taken from incubators for a new RNN (Recurrent Neural Networks) training. The P-LSTM can achieve adaptive long- and short- term memories to generate accurate predicted images. On the time-lapse images, entropy and bi-lateral filtering are used to extract the range of every colony to calculate colony morphology. Colony status transitions between consecutive images are calculated by mapping the calculated colony centers and ranges. Results Accuracies for the colony status transition, area and roundness for the 15 predicted (five-hour) future frames calculated from 1500-2500 colonies for respective frames show the effectiveness of the proposed method.Conclusion We proposed an efficient and automatic method to predict and monitor status transitions and morphology changes of mouse ESC colonies in culture using time-lapse fluorescence microscopy images.


2010 ◽  
Vol 26 (19) ◽  
pp. 2424-2430 ◽  
Author(s):  
O. Dzyubachyk ◽  
J. Essers ◽  
W. A. v. Cappellen ◽  
C. Baldeyron ◽  
A. Inagaki ◽  
...  

2017 ◽  
Vol 37 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Yuan-Hsiang Chang ◽  
Hideo Yokota ◽  
Kuniya Abe ◽  
Chia-Tong Tang ◽  
Ming-Dar Tasi

Sign in / Sign up

Export Citation Format

Share Document