scholarly journals Machine learning for exploring microbial inter-kingdom associations in Cystic Fibrosis and Bronchiectasis

2022 ◽  
Author(s):  
Leah Cuthbertson ◽  
Jonathan Ish-horowicz ◽  
Imogen Felton ◽  
Phillip James ◽  
Elena Turek ◽  
...  

Background: Cystic fibrosis (CF) and non-CF bronchiectasis (BX) are lung diseases characterised by severe chronic infections. Fungal and bacterial components of infection are both recognized. Recent molecular investigation of sputum from patients with CF and BX has revealed a complex mycobiome. However, little is known about how fungal and bacterial organisms interact or whether the interactions impact on disease outcomes. Methods: Quantitative PCR and next generation sequencing of ITS2 and 16S rRNA gene was carried out on 107 patients with CF and BX and defined clinical fungal infection status. Fungal and bacterial communities were explored using supervised and unsupervised machine learning to understand associations between fungal and bacterial communities and their relationship to disease. Results: Fungal and bacterial communities both had significantly higher biomass and lower diversity in CF compared to BX patients. Random forest modelling demonstrated that the fungal and bacterial communities were distinct between CF and BX patients. Within the CF group, bacterial communities contained no predictive signal for fungal disease status. Neither bacterial nor fungal community composition were predictive of the presence of CF pulmonary exacerbation (CFPE). Intra-kingdom correlations were far stronger than those between the two kingdoms. Dirichlet mixture components analysis identified two distinct clusters of bacteria related to the relative abundance of Pseudomonas. Fungal community composition contained no predictive signal for bacterial clusters. Conclusions: Clear changes in diversity were observed between patients with different clinical disease status. Although our results demonstrate that bacterial community composition differs in the presence of fungal disease, no direct relationship between bacterial and fungal OTUs was found.

2020 ◽  
Author(s):  
Tahliyah S. Mims ◽  
Qusai Al Abdullah ◽  
Justin D. Stewart ◽  
Sydney P. Watts ◽  
Catrina T. White ◽  
...  

ABSTRACTObjectiveAs an active interface between the host and their diet, the gut bacteriome influences host metabolic adaptation. However, the contribution of gut fungi to host metabolic outcomes is not yet understood. Therefore, we aimed to determine if host metabolic response to an ultra-processed diet reflects gut fungal community composition.DesignWe compared jejunal fungi and bacteria from 72 healthy mice with the same genetic background but different starting mycobiomes before and after 8 weeks on an ultra-processed or standardized diet using 16S and internal transcribed spacer region 2 ribosomal RNA sequencing. We measured host body composition using magnetic resonance imaging, examined changes in metabolically active host tissues and quantified serum metabolic biomarkers.ResultsGut fungal communities are highly variable between mice, differing by vendor, age and sex. After exposure to an ultra-processed diet for 8 weeks, persistent differences in fungal community composition strongly associate with differential deposition of body mass in male mice compared to mice on standardized diet. Fat deposition in the liver, genomic adaptation of metabolically active tissues and serum metabolic biomarkers are correlated with alterations in fungal diversity and community composition. Variation in fungi from the genera Thermomyces and Saccharomyces most strongly associate with increased weight gain.ConclusionsIn the gut of healthy mice, host-microbe metabolic interactions strongly reflect variability in fungal communities. Our results confirm the importance of luminal fungal communities to host metabolic adaptation to dietary exposure. Gut fungal communities may represent a therapeutic target for the prevention and treatment of metabolic disease.Graphical AbstractIn BriefWhat is already known about this subject?Gut bacterial communities have evolved to influence the metabolic outcomes of the host in mammals. Evidence from across the lifespan suggests that differences in composition of these communities is associated with energy consumption. However, gut microbial communities, while often equated to bacteria, are diverse, multi-kingdom ecologies and limited information is available for the role of other kingdoms of life, such as fungi.What are the new findings?Gut fungal communities, collectively termed the mycobiome, are less diverse and abundant than bacterial communities in the gastrointestinal tract. This study identifies the considerable influence of the environment and dietary exposure on the composition of jejunal fungal communities in healthy mice with the same genetic background. After exposure to processed diet, differences in fungal community composition in male mice were strongly correlated with persistent differences body composition and markers of metabolic tone.How might it impact on clinical practice in the foreseeable future?These results verify that the baseline metabolic tone of health mice strongly reflects the ecological complexity of the gastrointestinal mycobiome. Variation in the composition of gut fungal communities is likely an underappreciated source of experimental and clinical variability in metabolic studies. Gastrointestinal fungi are likely a target for prevention and treatment of metabolic disease.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7631 ◽  
Author(s):  
Yong Li ◽  
Dashuan Tian ◽  
Jinsong Wang ◽  
Shuli Niu ◽  
Jing Tian ◽  
...  

Atmospheric nitrogen (N) deposition and phosphorus (P) addition both can change soil bacterial and fungal community structure with a consequent impact on ecosystem functions. However, which factor plays an important role in regulating responses of bacterial and fungal community to N and P enrichments remains unclear. We conducted a manipulative experiment to simulate N and P inputs (10 g N · m−2 · yr−1 NH4NO3 or 10 g P · m−2 · yr−1 NaH2PO4) and compared their effects on soil bacterial and fungal species richness and community composition. The results showed that the addition of N significantly increased NH4+ and Al3+ by 99.6% and 57.4%, respectively, and consequently led to a decline in soil pH from 4.18 to 3.75 after a 5-year treatment. P addition increased Al3+ and available P by 27.0% and 10-fold, respectively, but had no effect on soil pH. N addition significantly decreased bacterial species richness and Shannon index and resulted in a substantial shift of bacterial community composition, whereas P addition did not. Neither N nor P addition changed fungal species richness, Shannon index, and fungal community composition. A structural equation model showed that the shift in bacterial community composition was related to an increase in soil acid cations. The principal component scores of soil nutrients showed a significantly positive relationship with fungal community composition. Our results suggest that N and P additions affect soil bacterial and fungal communities in different ways in subtropical forest. These findings highlight how the diversity of microbial communities of subtropical forest soil will depend on future scenarios of anthropogenic N deposition and P enrichment, with a particular sensitivity of bacterial community to N addition.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3362 ◽  
Author(s):  
Kayla M. Williamson ◽  
Brandie D. Wagner ◽  
Charles E. Robertson ◽  
Emily J. Johnson ◽  
Edith T. Zemanick ◽  
...  

BackgroundPrevious studies have demonstrated the importance of DNA extraction methods for molecular detection ofStaphylococcus,an important bacterial group in cystic fibrosis (CF). We sought to evaluate the effect of enzymatic digestion (EnzD) prior to DNA extraction on bacterial communities identified in sputum and oropharyngeal swab (OP) samples from patients with CF.MethodsDNA from 81 samples (39 sputum and 42 OP) collected from 63 patients with CF was extracted in duplicate with and without EnzD. Bacterial communities were determined by rRNA gene sequencing, and measures of alpha and beta diversity were calculated. Principal Coordinate Analysis (PCoA) was used to assess differences at the community level and Wilcoxon Signed Rank tests were used to compare relative abundance (RA) of individual genera for paired samples with and without EnzD.ResultsShannon Diversity Index (alpha-diversity) decreased in sputum and OP samples with the use of EnzD. Larger shifts in community composition were observed for OP samples (beta-diversity, measured by Morisita-Horn), whereas less change in communities was observed for sputum samples. The use of EnzD with OP swabs resulted in significant increase in RA for the generaGemella(p < 0.01),Streptococcus(p < 0.01), andRothia(p < 0.01).Staphylococcus(p < 0.01) was the only genus with a significant increase in RA from sputum, whereas the following genera decreased in RA with EnzD:Veillonella(p < 0.01),Granulicatella(p < 0.01),Prevotella(p < 0.01), andGemella(p = 0.02). In OP samples, higher RA of Gram-positive taxa was associated with larger changes in microbial community composition.DiscussionWe show that the application of EnzD to CF airway samples, particularly OP swabs, results in differences in microbial communities detected by sequencing. Use of EnzD can result in large changes in bacterial community composition, and is particularly useful for detection ofStaphylococcusin CF OP samples. The enhanced identification ofStaphylococcus aureusis a strong indication to utilize EnzD in studies that use OP swabs to monitor CF airway communities.


2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Ben Ma ◽  
Timothy M LaPara ◽  
Ashley N. Evans ◽  
Raymond M Hozalski

ABSTRACT Spatial patterns of bacterial community composition often follow a distance–decay relationship in which community dissimilarity increases with geographic distance. Such a relationship has been commonly observed in natural environments, but less so in engineered environments. In this study, bacterial abundance and community composition in filter media samples (n = 57) from full-scale rapid biofilters at 14 water treatment facilities across North America were determined using quantitative polymerase chain reaction and Illumina HiSeq high-throughput sequencing targeting the 16S rRNA gene, respectively. Bacteria were abundant on the filter media (108.8±0.3 to 1010.7±0.2 16S rRNA gene copies/cm3 bed volume) and the bacterial communities were highly diverse (Shannon index: 5.3 ± 0.1 to 8.4 ± 0.0). Significant inter-filter variations in bacterial community composition were observed, with weighted UniFrac dissimilarity values following a weak but highly significant distance–decay relationship (z = 0.0057 ± 0.0006; P = 1.8 × 10−22). Approximately 50% of the variance in bacterial community composition was explained by the water quality parameters measured at the time of media sample collection (i.e. pH, temperature and dissolved organic carbon concentration). Overall, this study suggested that the microbiomes of biofilters are primarily shaped by geographic location and local water quality conditions but the influence of these factors on the microbiomes is tempered by filter design and operating conditions.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1664
Author(s):  
Felix R. Kurzemann ◽  
Ulrich Plieger ◽  
Maraike Probst ◽  
Heide Spiegel ◽  
Taru Sandén ◽  
...  

Fertilization of soil is needed to fulfill the growing demand for livestock feed and human food requirements. However, fertilization has short and long-term impacts on the soil microbiota. These, in turn, may influence plant viability and growth. We investigated the soil microbiota of a 27-year field trial, focusing on the influences of mineral nitrogen (N) fertilization, different composts and combinations of compost plus mineral N as soil amendments. Two N rates (0 and 80 kg per ha) and four different composts (urban organic waste compost (OWC) green waste compost (GC), farmyard manure (MC) compost and sewage sludge compost (SSC)) were used. Soil samples for this study were taken in 2018 after the growing season of maize. In addition to maize yield, the effects on soil physicochemical properties and the soil microbiota were analyzed. There was a trend for increased maize yields for all fertilizers; however, only the application of GC and SSC in combination with mineral N fertilizer showed significant effects. The different organic amendments influenced physicochemical soil properties. Phosphorus concentrations were three times higher in plots receiving SSC (≈312 mg kg−1) and SSC + N (≈297 mg kg−1) than control (≈89 mg kg−1) or mineral N fertilizer (≈97 mg kg−1) alone. Magnesium concentrations in plots treated with SSC (≈74 mg kg−1) were lower compared to soils treated with GC and MC, respectively (≈135 mg kg−1 and 126 mg kg−1). Bacteria exceeded the fungal community in terms of both richness and diversity. While the bacterial community composition differed significantly among the treatments, the fungal community composition was rather unaffected. Our conclusion is that composts produced from various substrates serve as valuable nutrient sources for plants and can partially substitute mineral N. In addition, composts increased soil microbial biomass and modulated the composition of the soil’s microbial community.


2018 ◽  
Author(s):  
Nathan Cermak ◽  
Manoshi Sen Datta ◽  
Arolyn Conwill

AbstractSimple synthetic bacterial communities are powerful tools for studying microbial ecology and evolution, as they enable rapid iteration between controlled laboratory experiments and theoretical modeling. However, their utility is hampered by the lack of fast, inexpensive, and accurate methods for quantifying bacterial community composition. For instance, while next-generation amplicon sequencing can be very accurate, high costs (>$30 per sample) and turnaround times (>1 month) limit the nature and pace of experiments. Here, we introduce a new approach for quantifying composition in synthetic bacterial communities based on Sanger sequencing. First, for a given community, we PCR-amplify a universal marker gene (here, the 16S rRNA gene), which yields a mixture of amplicons. Second, we sequence this amplicon mixture in a single Sanger sequencing reaction, which produces a “mixed” electropherogram with contributions from each community member. We also sequence each community member’s marker gene individually to generate “individual” electropherograms. Third, we fit the mixed electropherogram as a linear combination of time-warped individual electropherograms, thereby allowing us to estimate the fractional amplicon abundance of each strain within the community. Importantly, our approach accounts for retention-time variability in electrophoretic signals, which is crucial for accurate compositional estimates. Using synthetic communities of marine bacterial isolates, we show that this approach yields accurate and reproducible abundance estimates for two-, four-, and seven-strain bacterial communities. Furthermore, this approach can provide results within one day and costs ~$5 USD per sample. We envision this approach will enable new insights in microbial ecology by increasing the number of samples that can be analyzed and enabling faster iteration between experiments and theory. We have implemented our method in a free and open-source R package called CASEU (“Compositional Analysis by Sanger Electropherogram Unmixing”), available at https://bitbucket.org/DattaManoshi/caseu.


2021 ◽  
Author(s):  
Jorge Domínguez ◽  
Manuel Aira ◽  
Keith A. Crandall ◽  
Marcos Pérez-Losada

Abstract Wastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful in processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by their disposal. Here, we utilized 16S and ITS rRNA high-throughput sequencing to characterize bacterial and fungal community composition and structure during the gut- and cast-associated processes (GAP and CAP, respectively) of vermicomposting of sewage sludge. Bacterial and fungal community composition and diversity changed significantly during both vermicomposting processes. Most of the bacterial and fungal taxa in the sewage sludge were eliminated during vermicomposting, mainly through the GAP. Vermicomposting of sewage resulted in a stable and rich microbial community with potential biostimulant properties that may aid plant growth. Our results support the use of vermicompost derived from sewage sludge for sustainable agricultural practices.


2020 ◽  
Vol 96 (2) ◽  
Author(s):  
A S Pradeep Ram ◽  
J Keshri ◽  
T Sime-Ngando

ABSTRACT Limited data exist on the simultaneous impact of bottom-up (nutrients) and top-down (viruses and heterotrophic nanoflagellates) forces in shaping freshwater bacterial communities. In our laboratory microcosms, nutrient additions (organic and inorganic) and viral reduction approach led to the proliferation of high nucleic acid (HNA) bacterial subpopulation without an increase in phage abundance. High viral-mediated bacterial lysis in the presence of nanoflagellates yielded high proportion of low nucleic acid bacterial subpopulation. 16S rRNA gene sequence analysis indicated that members of classes Proteobacteria and Bacteroidetes evoked differential responses to nutrients and mortality forces, thereby resulting in differences (P &lt; 0.001) in bacterial community composition and diversity, as observed from analysis of similarities and UniFrac analysis. Bacterial species richness (Chao) and diversity (Shannon) index was significantly higher (P &lt; 0.001) in the presence of both the top-down factors and viruses alone, whereas lower host diversity was observed under nutrient relaxation of growth-limiting substrates due to the explosive growth of opportunistic HNA bacterial subpopulation. Our results are in agreement with the theoretical model of ‘killing the winner’, where the availability of growth-limiting substrates can act as a stimulating factor for host community composition while top-down forces can operate in the control of host diversity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Keqiang Shao ◽  
Xin Yao ◽  
Zhaoshi Wu ◽  
Xingyu Jiang ◽  
Yang Hu ◽  
...  

Abstract Background Bacterial community play a key role in environmental and ecological processes in river ecosystems. Rivers are used as receiving body for treated and untreated urban wastewaters that brings high loads of sewage and excrement bacteria. However, little is known about the bacterial community structure and functional files in the rivers around the eutrophic Chaohu Lake, the fifth largest freshwater lake in China, has been subjected to severe eutrophication and cyanobacterial blooms over the past few decades. Therefore, understanding the taxonomic and functional compositions of bacterial communities in the river will contribute to understanding aquatic microbial ecology. The main aims were to (1) examine the structure of bacterial communities and functional profiles in this system; (2) find the environmental factors of bacterial community variations. Results We studied 88 sites at rivers in the Chaohu Lake basin, and determined bacterial communities using Illumina Miseq sequencing of the 16 S rRNA gene, and predicted functional profiles using PICRUSt2. A total of 3,390,497 bacterial 16 S rRNA gene sequences were obtained, representing 17 phyla, and 424 genera; The dominant phyla present in all samples were Bacteroidetes (1.4-82.50 %), followed by Proteobacteria (12.6–97.30 %), Actinobacteria (0.1–17.20 %). Flavobacterium was the most numerous genera, and accounted for 0.12–80.34 % of assigned 16 S reads, followed by Acinetobacter (0.33–49.28 %). Other dominant bacterial genera including Massilia (0.06–25.40 %), Psychrobacter (0-36.23 %), Chryseobacterium (0.01–22.86 %), Brevundimonas (0.01–12.82 %), Pseudomonas (0-59.73 %), Duganella (0.08–23.37 %), Unidentified Micrococcaceae (0-8.49 %). The functional profiles of the bacterial populations indicated an relation with many human diseases, including infectious diseases. Overall results, using the β diversity measures, coupled with heatmap and RDA showed that there were spatial variations in the bacterial community composition at river sites, and Chemical oxygen demand (CODMn) and (NH4+ )were the dominant environmental drivers affecting the bacterial community variance. Conclusions The high proportion of the opportunistic pathogens (Acinetobacter, Massilia, Brevundimonas) indicated that the discharge of sewage without adequate treatment into the rivers around Chaohu Lake. We propose that these bacteria could be more effective bioindicators for long-term sewage monitoring in eutrophic lakes.


2018 ◽  
Author(s):  
Nicole Sukdeo ◽  
Ewing Teen ◽  
P. Michael Rutherford ◽  
Hugues B. Massicotte ◽  
Keith N. Egger

AbstractSoils contain microbial inhabitants that differ in sensitivity to anthropogenic modification. Soil reclamation relies on monitoring these communities to evaluate ecosystem functions recovery post-disturbance. DNA metabarcoding and soil enzyme assays provide information about microbial functional guilds and organic matter decomposition activities respectively. However bacterial communities, fungal communities, and enzyme activities may not be equally informative for monitoring reclaimed soils. We compared effects of disturbance regimes applied to forest soils on fungal community composition, bacterial community composition, and potential hydrolase activities (N-acetyl-β-D-glucosaminidase, acid phosphatase, and cellobiohydrolase) at two times (14 days and 5 months post-disturbance) and depths (LFH versus mineral soil). Using disturbance versus control comparisons allowed us to identify genus-level disturbance-indicators and shifts in hydrolase activity levels. We observed declines in disturbed LFH fungal biomass (ergosterol) and declines in ectomycorrhizal fungi abundance across all disturbed samples, which prompted us to consider necromass-induced (fungal, root) saprotroph increases as disturbance indicators. Fungal community composition strongly shifted away from ecotmycorrhizal dominance to saprotroph dominance (i.e. increasedMortierella, andUmbelopsis) in disturbed plots at 5 months, while bacterial community composition did not shift to distinguish control plots from disturbed ones at either sampling time. Soil potential hydrolase data mainly indicated that mixing LFH material into mineral soil increases the measured activity levels compared to control and replaced mineral soil. Bacterial saprotrophs previously associated with mycelial necromass were detected across multiple regimes as disturbance indicators at 14 days post-disturbance. Our results confirm that ectomycorrhizal fungal genera are sensitive and persistently impacted by soil physical disturbances. Increases in saprotrophic bacterial genera are detectable 14 days pot-disturbance but only a few persist as disturbance indicators after several months. Potential hydrolase activities appear to be most useful for detecting the transfer of decomposition hotspots into mineral soils.


Sign in / Sign up

Export Citation Format

Share Document