scholarly journals Machine Learning-Based Enzyme Engineering of PETase for Improved Efficiency in Degrading Non-Biodegradable Plastic

2022 ◽  
Author(s):  
Arjun Gupta ◽  
Sangeeta Agrawal

Globally, nearly a million plastic bottles are produced every minute (1). These non-biodegradable plastic products are composed of Polyethylene terephthalate (PET). In 2016, researchers discovered PETase, an enzyme from the bacteria Ideonella sakaiensis which breaks down PET and nonbiodegradable plastic. However, PETase has low efficiency at high temperatures. In this project, we optimized the rate of PET degradation by PETase by designing new mutant enzymes which could break down PET much faster than PETase, which is currently the gold standard. We used machine learning (ML) guided directed evolution to modify the PETase enzyme to have a higher optimal temperature (Topt), which would allow the enzyme to degrade PET more efficiently. First, we trained three machine learning models to predict Topt with high performance, including Logistic Regression, Linear Regression and Random Forest. We then used Random Forest to perform ML-guided directed evolution. Our algorithm generated hundreds of mutants of PETase and screened them using Random Forest to select mutants with the highest Topt, and then used the top mutants as the enzyme being mutated. After 1000 iterations, we produced a new mutant of PETase with Topt of 71.38℃. We also produced a new mutant enzyme after 29 iterations with Topt of 61.3℃. To ensure these mutant enzymes would remain stable, we predicted their melting temperatures using an external predictor and found the 29-iteration mutant had improved thermostability over PETase. Our research is significant because using our approach and algorithm, scientists can optimize additional enzymes for improved efficiency.

ADMET & DMPK ◽  
2020 ◽  
Author(s):  
John Mitchell

<p class="ADMETabstracttext">We describe three machine learning models submitted to the 2019 Solubility Challenge. All are founded on tree-like classifiers, with one model being based on Random Forest and another on the related Extra Trees algorithm. The third model is a consensus predictor combining the former two with a Bagging classifier. We call this consensus classifier Vox Machinarum, and here discuss how it benefits from the Wisdom of Crowds. On the first 2019 Solubility Challenge test set of 100 low-variance intrinsic aqueous solubilities, Extra Trees is our best classifier. One the other, a high-variance set of 32 molecules, we find that Vox Machinarum and Random Forest both perform a little better than Extra Trees, and almost equally to one another. We also compare the gold standard solubilities from the 2019 Solubility Challenge with a set of literature-based solubilities for most of the same compounds.</p>


2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


Author(s):  
Farrikh Alzami ◽  
Erika Devi Udayanti ◽  
Dwi Puji Prabowo ◽  
Rama Aria Megantara

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.


Author(s):  
Mark Endrei ◽  
Chao Jin ◽  
Minh Ngoc Dinh ◽  
David Abramson ◽  
Heidi Poxon ◽  
...  

Rising power costs and constraints are driving a growing focus on the energy efficiency of high performance computing systems. The unique characteristics of a particular system and workload and their effect on performance and energy efficiency are typically difficult for application users to assess and to control. Settings for optimum performance and energy efficiency can also diverge, so we need to identify trade-off options that guide a suitable balance between energy use and performance. We present statistical and machine learning models that only require a small number of runs to make accurate Pareto-optimal trade-off predictions using parameters that users can control. We study model training and validation using several parallel kernels and more complex workloads, including Algebraic Multigrid (AMG), Large-scale Atomic Molecular Massively Parallel Simulator, and Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics. We demonstrate that we can train the models using as few as 12 runs, with prediction error of less than 10%. Our AMG results identify trade-off options that provide up to 45% improvement in energy efficiency for around 10% performance loss. We reduce the sample measurement time required for AMG by 90%, from 13 h to 74 min.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel Lowell Weller ◽  
Tanzy M. T. Love ◽  
Martin Wiedmann

Recent studies have shown that predictive models can supplement or provide alternatives to E. coli-testing for assessing the potential presence of food safety hazards in water used for produce production. However, these studies used balanced training data and focused on enteric pathogens. As such, research is needed to determine 1) if predictive models can be used to assess Listeria contamination of agricultural water, and 2) how resampling (to deal with imbalanced data) affects performance of these models. To address these knowledge gaps, this study developed models that predict nonpathogenic Listeria spp. (excluding L. monocytogenes) and L. monocytogenes presence in agricultural water using various combinations of learner (e.g., random forest, regression), feature type, and resampling method (none, oversampling, SMOTE). Four feature types were used in model training: microbial, physicochemical, spatial, and weather. “Full models” were trained using all four feature types, while “nested models” used between one and three types. In total, 45 full (15 learners*3 resampling approaches) and 108 nested (5 learners*9 feature sets*3 resampling approaches) models were trained per outcome. Model performance was compared against baseline models where E. coli concentration was the sole predictor. Overall, the machine learning models outperformed the baseline E. coli models, with random forests outperforming models built using other learners (e.g., rule-based learners). Resampling produced more accurate models than not resampling, with SMOTE models outperforming, on average, oversampling models. Regardless of resampling method, spatial and physicochemical water quality features drove accurate predictions for the nonpathogenic Listeria spp. and L. monocytogenes models, respectively. Overall, these findings 1) illustrate the need for alternatives to existing E. coli-based monitoring programs for assessing agricultural water for the presence of potential food safety hazards, and 2) suggest that predictive models may be one such alternative. Moreover, these findings provide a conceptual framework for how such models can be developed in the future with the ultimate aim of developing models that can be integrated into on-farm risk management programs. For example, future studies should consider using random forest learners, SMOTE resampling, and spatial features to develop models to predict the presence of foodborne pathogens, such as L. monocytogenes, in agricultural water when the training data is imbalanced.


Geosciences ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 265
Author(s):  
Stefan Rauter ◽  
Franz Tschuchnigg

The classification of soils into categories with a similar range of properties is a fundamental geotechnical engineering procedure. At present, this classification is based on various types of cost- and time-intensive laboratory and/or in situ tests. These soil investigations are essential for each individual construction site and have to be performed prior to the design of a project. Since Machine Learning could play a key role in reducing the costs and time needed for a suitable site investigation program, the basic ability of Machine Learning models to classify soils from Cone Penetration Tests (CPT) is evaluated. To find an appropriate classification model, 24 different Machine Learning models, based on three different algorithms, are built and trained on a dataset consisting of 1339 CPT. The applied algorithms are a Support Vector Machine, an Artificial Neural Network and a Random Forest. As input features, different combinations of direct cone penetration test data (tip resistance qc, sleeve friction fs, friction ratio Rf, depth d), combined with “defined”, thus, not directly measured data (total vertical stresses σv, effective vertical stresses σ’v and hydrostatic pore pressure u0), are used. Standard soil classes based on grain size distributions and soil classes based on soil behavior types according to Robertson are applied as targets. The different models are compared with respect to their prediction performance and the required learning time. The best results for all targets were obtained with models using a Random Forest classifier. For the soil classes based on grain size distribution, an accuracy of about 75%, and for soil classes according to Robertson, an accuracy of about 97–99%, was reached.


Mekatronika ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 73-78
Author(s):  
Nur Fahriza Mohd Ali ◽  
Ahmad Farhan Mohd Sadullah ◽  
Anwar P.P. Abdul Majeed ◽  
Mohd Azraai Mohd Razman ◽  
Rabiu Muazu Musa

A door-to-door journey in a public transportation system is a notable concept that is practically being promoted among users to consider public transport as an important alternative. The door-to-door journey will integrate the travel segments starting from home to destination, including all visible amenities. Users’ preferences on the time travel of these key segments are necessary to be understood. In this case, Machine Learning technique has been seen as a robust computational advancement to forecast their travel mode choice. However, the most convenient model as the best predictor is still questionable. To address this issue, we employed some pre-eminent machine learning models, specifically Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR), k-Nearest Neighbor (kNN) as well as Support Vector Machine (SVM), to compare their travel mode choice prediction performance of users in the city of Kuantan. The data collection was conducted in Kuantan City via Revealed/Stated Preferences (RPSP) Survey between 8:00 AM to 5:00 PM on weekdays. The data collected was split into a ratio of 80:20 for training and testing before evaluating them between the aforesaid models. The results depicted that the Random Forest could provide satisfactory classification accuracies for both training and testing data up to 68.3% and 61.3%, respectively, compared to the other evaluated machine learning models. In summary, Random Forest provides a good result in the training and testing data and is considered as the best predictor in this research to forecast users’ mode choice in the city of Kuantan.


Sign in / Sign up

Export Citation Format

Share Document