scholarly journals Structural basis of ion - substrate coupling in the Na+-dependent dicarboxylate transporter VcINDY

2022 ◽  
Author(s):  
David Sauer ◽  
Jennifer J. Marden ◽  
Joseph C. Sudar ◽  
Jinmei Song ◽  
Christopher Mulligan ◽  
...  

The Na+-dependent dicarboxylate transporter from Vibrio cholerae (VcINDY) is a prototype for the divalent anion sodium symporter (DASS) family. While the utilization of an electrochemical Na+ gradient to power substrate transport is well established for VcINDY, the structural basis of this coupling between sodium and substrate binding is not currently understood. Here, using a combination of cryo-EM structure determination, succinate binding and site-directed cysteine alkylation assays, we demonstrate that the VcINDY protein couples sodium- and substrate-binding via a previously unseen induced-fit mechanism. In the absence of sodium, substrate binding is abolished, with the succinate binding regions exhibiting increased flexibility, including HPinb, TM10b and the substrate clamshell motifs. Upon sodium binding, these regions become structurally ordered and create a proper binding site for the substrate. Taken together, these results provide strong evidence that VcINDY's induced-fit mechanism is a result of the sodium-dependent formation of the substrate binding site.

2020 ◽  
Author(s):  
Lan Guan ◽  
Parameswaran Hariharan

AbstractThe symporter melibiose permease MelB is the best-studied representative from MFS_2 family and the only protein in this large family with crystal structure determined. Previous thermodynamic studies show that MelB utilizes a cooperative binding as the core mechanism for its obligatory symport. Here we present two sugar-bound X-ray crystal structures of a Salmonella typhimurium MelB D59C uniport mutant that binds and catalyzes melibiose transport uncoupled to either cation, as determined by biochemical and biophysical characterizations. The two structures with bound nitrophenyl-α-D-galactoside or dodecyl-β-D-melibioside, which were refined to a resolution of 3.05 or 3.15 Å, respectively, are virtually identical at an outward-facing conformation; each one contains a α-galactoside molecule in the middle of protein. In the substrate-binding site, the galactosyl moiety on both ligands are at an essentially same configuration, so a galactoside specificity determinant pocket can be recognized, and hence the molecular recognition mechanism for the binding of sugar in MelB is deciphered. The data also allow to assign the conserved cation-binding pocket, which is directly connected to the sugar specificity determinant pocket. The intimate connection between the two selection sites lays the structural basis for the cooperative binding and coupled transport. This key structural finding answered the long-standing question on the substrate binding for the Na+-coupled MFS family of transporters.SignificanceMajor facilitator superfamily_2 transporters contain >10,000 members that are widely expressed from bacteria to mammalian cells, and catalyze uptake of varied nutrients from sugars to phospholipids. While several crystal structures with bound sugar for other MFS permeases have been determined, they are either uniporters or symporters coupled solely to H+. MelB catalyzes melibiose symport with either Na+, Li+, or H+, a prototype for Na+-coupled MFS transporters, but its sugar recognition has been a long-unsolved puzzle. Two high-resolution crystal structures presented here clearly reveal the molecular recognition mechanism for the binding of sugar in MelB. The substrate-binding site is characterized with a small specificity groove adjoining a large nonspecific cavity, which could offer a potential for future exploration of active transporters for drug delivery.


2020 ◽  
Vol 118 (3) ◽  
pp. 442a
Author(s):  
Azaan Wilbon ◽  
Corinne Portiolli ◽  
Lie Wang ◽  
Ming Zhou

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Pragya Sharma ◽  
Veronika Tóth ◽  
Edel M. Hyland ◽  
Christopher J. Law

Abstract Background Plasmodium species are entirely dependent upon their host as a source of essential iron. Although it is an indispensable micronutrient, oxidation of excess ferrous iron to the ferric state in the cell cytoplasm can produce reactive oxygen species that are cytotoxic. The malaria parasite must therefore carefully regulate the processes involved in iron acquisition and storage. A 273 amino acid membrane transporter that is a member of the vacuolar iron transporter (VIT) family and an orthologue of the yeast Ca2+-sensitive cross complementer (CCC1) protein plays a major role in cytosolic iron detoxification of Plasmodium species and functions in transport of ferrous iron ions into the endoplasmic reticulum for storage. While this transporter, termed PfVIT, is not critical for viability of the parasite evidence from studies of mice infected with VIT-deficient Plasmodium suggests it could still provide an efficient target for chemoprophylactic treatment of malaria. Individual amino acid residues that constitute the Fe2+ binding site of the protein were identified to better understand the structural basis of substrate recognition and binding by PfVIT. Methods Using the crystal structure of a recently published plant VIT as a template, a high-quality homology model of PfVIT was constructed to identify the amino acid composition of the transporter’s substrate binding site and to act as a guide for subsequent mutagenesis studies. To test the effect of mutation of the substrate binding-site residues on PfVIT function a yeast complementation assay assessed the ability of overexpressed, recombinant wild type and mutant PfVIT to rescue an iron-sensitive deletion strain (ccc1∆) of Saccharomyces cerevisiae yeast from the toxic effects of a high concentration of extracellular iron. Results The combined in silico and mutagenesis approach identified a methionine residue located within the cytoplasmic metal binding domain of the transporter as essential for PfVIT function and provided insight into the structural basis for the Fe2+-selectivity of the protein. Conclusion The structural model of the metal binding site of PfVIT opens the door for rational design of therapeutics to interfere with iron homeostasis within the malaria parasite.


2020 ◽  
Vol 21 (2) ◽  
pp. 117-130 ◽  
Author(s):  
Mohammad J. Hosen ◽  
Mahmudul Hasan ◽  
Sourav Chakraborty ◽  
Ruhshan A. Abir ◽  
Abdullah Zubaer ◽  
...  

Objectives: The Arterial Tortuosity Syndrome (ATS) is an autosomal recessive connective tissue disorder, mainly characterized by tortuosity and stenosis of the arteries with a propensity towards aneurysm formation and dissection. It is caused by mutations in the SLC2A10 gene that encodes the facilitative glucose transporter GLUT10. The molecules transported by and interacting with GLUT10 have still not been unambiguously identified. Hence, the study attempts to identify both the substrate binding site of GLUT10 and the molecules interacting with this site. Methods: As High-resolution X-ray crystallographic structure of GLUT10 was not available, 3D homology model of GLUT10 in open conformation was constructed. Further, molecular docking and bioinformatics investigation were employed. Results and Discussion: Blind docking of nine reported potential in vitro substrates with this 3D homology model revealed that substrate binding site is possibly made with PRO531, GLU507, GLU437, TRP432, ALA506, LEU519, LEU505, LEU433, GLN525, GLN510, LYS372, LYS373, SER520, SER124, SER533, SER504, SER436 amino acid residues. Virtual screening of all metabolites from the Human Serum Metabolome Database and muscle metabolites from Human Metabolite Database (HMDB) against the GLUT10 revealed possible substrates and interacting molecules for GLUT10, which were found to be involved directly or partially in ATS progression or different arterial disorders. Reported mutation screening revealed that a highly emergent point mutation (c. 1309G>A, p. Glu437Lys) is located in the predicted substrate binding site region. Conclusion: Virtual screening expands the possibility to explore more compounds that can interact with GLUT10 and may aid in understanding the mechanisms leading to ATS.


FEBS Letters ◽  
2006 ◽  
Vol 580 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Jiro Arima ◽  
Yoshiko Uesugi ◽  
Misugi Uraji ◽  
Masaki Iwabuchi ◽  
Tadashi Hatanaka

Sign in / Sign up

Export Citation Format

Share Document