scholarly journals Evolution under juvenile malnutrition impacts adult metabolism and fitness

2022 ◽  
Author(s):  
Berra Erkosar ◽  
Cindy Dupuis ◽  
Fanny Cavigliasso ◽  
Loriane Savary ◽  
Hector Gallart-Ayala ◽  
...  

Juveniles are often first to suffer from nutrient shortage, and juvenile undernutrition is likely an important force of natural selection shaping animal physiology, with consequences potentially extending into adulthood. We combined RNAseq, targeted metabolomics and genomics to study the consequences of experimental evolution under juvenile undernutrition for metabolism of reproductively active adult females of Drosophila melanogaster. Compared to six Control populations maintained on standard diet, six Selected populations evolved for over 230 generations on a nutrient-poor larval diet showed major changes in adult gene expression and metabolite abundance. In particular, Selected flies were relatively deficient in essential amino acids and purine nucleotides, but showed overabundance of several non-essential amino-acids involved in purine synthesis and overexpression of multiple enzymes catalyzing this pathway. Selected flies also accumulated medium-chain acylcarnitines suggestive of congestion in beta-oxidation, possibly linked to deficiency of electron transporters. Some aspects of the metabolic profile of Selected flies resembled that of flies subject to starvation. Furthermore, differences between Selected and Control populations in adult gene expression were in general positively correlated with differences in larval expression, consistent with pleiotropy in gene regulation between the life stages. Finally, Selected flies were less fit in terms of fecundity than Controls even when both were raised under the conditions under which the Selected populations evolved. These results suggest that evolutionary adaptation to juvenile undernutrition has large pleiotropic consequences for adult metabolism, and that they are costly rather than adaptive for adult fitness.

2021 ◽  
Author(s):  
Sebastião Mauro Bezerra Duarte ◽  
José Tadeu Stefano ◽  
Lucas A. M. Franco ◽  
Roberta C. Martins ◽  
Bruna D. G. C. Moraes ◽  
...  

Abstract Background: The aim of this study was to examine the impact of synbiotic supplementation in obesity and microbiota in ob/ob mice. 20 animals were divided into four groups: Obese Treated (OT), Control (OC), Lean Treated (LT) and Control (LC). All animals received standard diet for 8 weeks. Treated groups received a synbiotic in water while nontreated groups received water. After 8 weeks, all animals were sacrificed and gut tissue mRNA isolation and stool samples by microbiota analysis were collected. Beta-catenin, occludin, cadherin and zonulin were analyzed in gut tissue by RT-qPCR. Results: The synbiotic supplementation reduced body weight gain in OT comparing with OC (p=0.0398), increase of Enterobacteriaceae (p=0.005) and decrease of Cyanobacteria (p=0.047), Clostridiaceae (p=0.026), Turicibacterales (p=0.005) and Coprococcus (p=0.047). A significant reduction of Sutterella bacteria (p=0.009) and Turicibacter (p=0.005) was observed in LT compared to LC. Alpha and beta diversities were differ between all treated groups. Beta-catenin gene expression was significantly decreased in the gut tissue of OT (p≤0.0001) when compared to other groups. No changes were observed in occludin, cadherin and zonulin gene expression in the gut tissue. Conclusion: The synbiotics supplementation prevents excessive weight gain, modulates the gut microbiota, and reduces beta-catenin expression in ob/ob mice.


1999 ◽  
Vol 58 (3) ◽  
pp. 625-632 ◽  
Author(s):  
Alain Bruhat ◽  
Céline Jousse ◽  
Pierre Fafournoux

In mammals, the plasma concentration of amino acids is affected by nutritional or pathological conditions. For example, an alteration in the amino acid profile has been reported when there is a deficiency of any one or more of the essential amino acids, a dietary imbalance of amino acids, or an insufficient intake of protein. We examined the role of amino acid limitation in regulating mammalian gene expression. Depletion of arginine, cystine and all essential amino acids leads to induction of insulin-like growth factor-binding protein-1 (IGFBP-1) mRNA and protein expression in a dose-dependent manner. Moreover, exposure of HepG2 cells to amino acids at a concentration reproducing the amino acid concentration found in portal blood of rats fed on a low-protein diet leads to a significantly higher (P < 0·0002) expression of IGFBP-1. Using CCAAT/enhancer-binding protein homologous protein (CHOP) induction by leucine deprivation as a model, we have characterized the molecular mechanisms involved in the regulation of gene expression by amino acids. We have shown that leucine limitation leads to induction of CHOP mRNA and protein. Elevated mRNA levels result from both an increase in the rate of CHOP transcription and an increase in mRNA stability. We have characterized two elements of the CHOP gene that are essential to the transcriptional activation produced by an amino acid limitation. These findings demonstrate that an amino acid limitation, as occurs during dietary protein deficiency, can induce gene expression. Thus, amino acids by themselves can play, in concert with hormones, an important role in the control of gene expression.


Medicina ◽  
2021 ◽  
Vol 57 (3) ◽  
pp. 239
Author(s):  
Elena Cojocaru ◽  
Maria Magdalena Leon-Constantin ◽  
Carmen Ungureanu ◽  
Mioara Florentina Trandafirescu ◽  
Alexandra Maștaleru ◽  
...  

Background and Objectives: Considering atherosclerosis as one of the more challenging threats to healthcare worldwide, any novel therapy that counteracts the risks for developing it, provides new opportunities for the management of this process. Material and methods: We performed an experimental research in which we induced a hypercholesterolemia via a cholesterol-rich diet. Our aim was to demonstrate the antiatherogenic potential of two essential amino acids (valine and leucine). The experimental study was carried out over a period of 60 days. Male Wistar rats weighing between 250–280 g were used and divided into 4 groups, each group including 8 animals. Group I—control was fed with a standard diet. Group II received cholesterol, group III cholesterol and valine and group IV cholesterol and leucine. Blood samples were collected from the retro-orbital plexus, under anesthesia with 75 mg/kg of intraperitoneal ketamine, in three different moments (R0—1st day, R1—the 30th day, R2—the 60th day) in order to measure the levels of triglycerides. Results: In R0, there were no significant differences between the average levels of triglycerides across all the groups (p < 0.05). Compared to the group I, in R1 and R2, the average levels of triglycerides were significantly higher in all groups (p < 0.001). Also, in R1 and R2, the average triglycerides in group II receiving cholesterol (C) were significantly higher than those in group III receiving valine (C + V) as well as in group IV receiving leucine (C + L) (p < 0.001; p < 0.05). In R2, the average triglycerides in group III were significantly lower than in group IV (p < 0.001). Conclusions: Our data provides evidence that valine and leucine have a direct impact on the lipid metabolism parameters by lowering the level of triglycerides. The comparison of the two essential amino acids indicates that valine acts more promptly and rapidly than leucine.


2021 ◽  
Author(s):  
Sebastião Mauro Bezerra Duarte ◽  
José Tadeu Stefano ◽  
Lucas A. M. Franco ◽  
Roberta C. Martins ◽  
Bruna D. G. C. Moraes ◽  
...  

Abstract Background: Obesity is one of the main health problems in the world today and dysbiosis seem to be one of the factors involved. The aim of this study was to examine the impact of synbiotic supplementation in obesity and microbiota in ob/ob mice. 20 animals were divided into four groups: Obese Treated (OT) and Control (OC), Lean Treated (LT) and Control (LC). All animals received standard diet for 8 weeks. Treated groups received a synbiotic in water while nontreated groups received water. After 8 weeks, all animals were sacrificed and gut tissue mRNA isolation and stool samples by microbiota analysis were collected. Beta-catenin, occludin, cadherin and zonulin were analyzed in gut tissue by RT-qPCR. Microbiome DNA was extracted from stool samples and sequenced using the Ion PGM Torrent platform. Results: The synbiotic supplementation reduced body weight gain in OT group comparing with OC (p=0.0398), increase of Enterobacteriaceae (p=0.005) and decrease of Cyanobacteria (p=0.047), Clostridiaceae (p=0.026), Turicibacterales (p=0.005) and Coprococcus (p=0.047). In the other hand, a significant reduction of Sutterella bacteria (p=0.009) and Turicibacter (p=0.005) was observed in LT group compared to LC. Alpha and beta diversities were differ between all treated groups. Beta-catenin gene expression was significantly decreased in the gut tissue of OT group (p≤0.0001) when compared to other groups. No changes were observed in occludin, cadherin and zonulin gene expression in the gut tissue. Conclusion: The synbiotics supplementation prevents excessive weight gain, modulates the gut microbiota, and reduces beta-catenin expression in ob/ob mice.


2006 ◽  
Vol 18 (2) ◽  
pp. 194 ◽  
Author(s):  
A. T. Palasz ◽  
J. Beltrán Breña ◽  
P. De la Fuente ◽  
M. F. Martinez ◽  
A. Gutiérrez-Adán

We have previously shown that bovine embryos cultured in SOFaa (BME + MEM amino acids) culture medium with hyaluronan (HA) + BSA are of better quality (Guti�rrez-Ad�n et al. 2005 Reprod. Fertil. Dev. 17, 219). Our objective was to examine the effect of essential (BME) or non-essential (MEM) amino acids with or without HA (MAP-5; Bioniche, Inc., Belleville, Ontario, Canada) on bovine embryo in vitro development and mRNA transcription of five developmentally important genes; apoptosis (Bax), growth factor (IGF-II), glucose (Glut-1) and fructose (Glut-5) transport and metabolism, and cell to cell adhesion (Cx-43). A total of 1474 presumptive zygotes (5 replicates) were initially cultured in 40 �L drops in the following groups: Group 1, control, SOFaa; Group 2, SOF-1 (MEM only); and Group 3, SOF-2 (BME only). On Day 4 (~96 h post-insemination (pi) the number of zygotes that had developed to d8 cells was recorded and 10 �L of SOF-1 and SOF-2, each with 2.5 mg/mL HA, was added to half of the embryos from Groups 2 and 3, respectively; the other half of Groups 2 and 3 and control group received 10 �L of corresponding medium without HA. Embryos were cultured under paraffin oil at 39�C and 5% CO2 in humidified air. Cleavage rates were recorded on Day 2 and the number of blastocysts on Days 7, 8, and 9. Five blastocysts from each replicate from each treatment were frozen for determination of gene expression patterns later. Cleavage rates and embryo development 96 h pi were compared among groups by chi-square analysis. The effects of HA and medium on blastocyst rates were analyzed by logistic regression and the data on mRNA expression by one-way repeated-measures ANOVA. Cleavage rates were 81.1% in SOFaa and 79.3% in SOF-1 (P = 0.48) and different from those in the SOF-2 group (72.4%; P < 0.02). The proportion of embryos that developed to d8 cells at Day 4 was higher in the control (46.7%) and SOF-1 (46.8%) groups than in the SOF-2 group (32.6%). The number of blastocysts that developed in SOFaa (37.0%), SOF-1 (37.7%), and SOF-1 + HA (37.8%) were higher (P < 0.001) than those in SOF-2 (19.6%) and SOF-2 + HA (21.8%). The level of expression of Glut-5 was not different among the groups. However, SOF-2 was the only group that had significantly lower expression of Glut-5, Igf II, and Cx43, and higher expression of BAX (P < 0.05) as compared to the control group and the SOF-1 groups with or without HA. Addition of HA to SOF-2 medium increased expression of Glut-1 and Igf II and decreased expression of BAX as compared to the SOF-1 only and control groups and the SOF-2 groups with or without HA (P < 0.05). The level of expression of Cx43 was higher in the control than in four remaining groups, and lower in the SOF-2 than in the SOF-1 group (P < 0.05). Addition of HA increased expression of Cx43 in both SOF-1 and SOF-2 groups but this level of expression was lower than in the control group; the level in the SOF-2 + HA group was lower (P < 0.05) than in the SOF-1 + HA group. We conclude that, within our protocol, MEM amino acids only stimulate embryo development to the blastocyst stage and the addition of HA to the SOF-MEM and SOF-BME media on Day 4 of culture improved embryo quality.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
D. A. Mugahid ◽  
T. G. Sengul ◽  
X. You ◽  
Y. Wang ◽  
L. Steil ◽  
...  

AbstractMuscle atrophy is a physiological response to disuse and malnutrition, but hibernating bears are largely resistant to this phenomenon. Unlike other mammals, they efficiently reabsorb amino acids from urine, periodically activate muscle contraction, and their adipocytes differentially responds to insulin. The contribution of myocytes to the reduced atrophy remains largely unknown. Here we show how metabolism and atrophy signaling are regulated in skeletal muscle of hibernating grizzly bear. Metabolic modeling of proteomic changes suggests an autonomous increase of non-essential amino acids (NEAA) in muscle and treatment of differentiated myoblasts with NEAA is sufficient to induce hypertrophy. Our comparison of gene expression in hibernation versus muscle atrophy identified several genes differentially regulated during hibernation, including Pdk4 and Serpinf1. Their trophic effects extend to myoblasts from non-hibernating species (including C. elegans), as documented by a knockdown approach. Together, these changes reflect evolutionary favored adaptations that, once translated to the clinics, could help improve atrophy treatment.


2018 ◽  
Vol 26 (1) ◽  
pp. 65-75
Author(s):  
Simona Ifrim ◽  
Cornelia Amalinei ◽  
Elena Cojocaru ◽  
Mioara Calipsoana Matei

Abstract Hypercholesterolemia has a major contribution to the occurrence and progression of atherosclerotic lesions. Recent studies report the involvement of branched-chain amino acids in cholesterol methabolism. The aim of this research was to evaluate the role of valine, leucine and isoleucine on the occurrence and progression of atherosclerosis in rats receiving hypercholesterolic diet. Material and methods: 50 male Wistar rats distributed into five groups with the following type of diets: group I (control) received standard diet; group II - cholesterol; group III - cholesterol and valine; group IV - cholesterol and leucine; group V - cholesterol and isoleucine. The experimental study was conducted over a period of 2 months. The animals were evaluated for the serum levels of total cholesterol at the beginning of the experiment, after 1 month and after 2 months. The collected tissue fragments of heart and aorta were prepared for the examination by optical microscopy in order to identify the atherosclerotic changes. Results: The most increased values of serum cholesterol were recorded in rats from group II (p=0.001), for the second and third evaluation. The histological examination showed early histopathological lesions on the vascular intima for the groups treated with cholesterol, valine, leucine, and isoleucine. These early changes (the occurrence of some superficial endothelial erosions, adhesion of erythrocytes and platelets) were correlated with the degree of the arterial wall damage, of the leukocytes adhesion to the arterial intima, and the discontinuities of the internal elastic lamina. Conclusion: The comparative study of the effects of the three essential amino acids revealed that valine induced a faster response than leucine and isoleucine on the improvement of biochemical parameters, but there were no significant differences between the three amino acids in terms of their protective ability, demonstrated by the histopathological lesion assessment.


2004 ◽  
Vol 92 (4) ◽  
pp. 627-634 ◽  
Author(s):  
Pascal Pernet ◽  
Colette Coudray-Lucas ◽  
Christina Schneid ◽  
Alain Jardel ◽  
Luc Cynober

The optimal dosage of ornithine α-ketoglutarate (OKG) for repleting tissue glutamine (Gln) concentrations and maintaining N homeostasis after injury is unknown. We set out to perform ‘dose-ranging’ of OKG supplementation after an endotoxaemic challenge. Sixty-one male Wistar rats were injected with 3 mg lipopolysaccharide (LPS) from Escherichia coli/kg (n 50) or saline vehicle (9 g NaCl/l; controls n 11). After a 24 h fast, survivors were fed by gavage for 48 h with a polymeric standard diet (879 kJ/kg per d and 1·18 g N/kg per d) supplemented with non-essential amino acids (control, n 11; LPS-OKG-0·0, n 9), or with 0·5 g OKG/kg per d (LPS-OKG-0·5, n 12), 1·5 OKG/kg per d (LPS-OKG-1.5, n 11) or 4·5 g OKG/kg per d (LPS-OKG-4·5, n 10). The diets for all groups were made isonitrogenous with the LPS-OKG-4·5 diet by adding an appropriate amount of non-essential amino acids. Rats were killed on day 3 for blood and tissue sampling (muscle, jejunum mucosa, liver). Urine was collected daily for 3-methylhistidine and total N assays. The OKG dose was correlated with Gln concentrations in every tissue and with cumulative N balance (Spearman test, P<0·01). 3-Methylhistidine excretion was increased in endotoxaemic groups compared with controls (ANOVA, P<0·05) except in the LPS-OKG-4·5 group. Only the LPS-OKG-4·5 group achieved a positive post-injury N balance (t test, P<0·05). In conclusion, OKG exerted a dose-dependent effect on tissue Gln concentration and N balance, but only the highest dosage counteracted myofibrillar hypercatabolism and caused a positive N balance.


2005 ◽  
Vol 25 (19) ◽  
pp. 8592-8606 ◽  
Author(s):  
Christiane Kuhl ◽  
Ann Atzberger ◽  
Francisco Iborra ◽  
Bernhard Nieswandt ◽  
Catherine Porcher ◽  
...  

ABSTRACT The DNA-binding hemopoietic zinc finger transcription factor GATA1 promotes terminal megakaryocyte differentiation and restrains abnormal immature megakaryocyte expansion. How GATA1 coordinates these fundamental processes is unclear. Previous studies of synthetic and naturally occurring mutant GATA1 molecules demonstrate that DNA-binding and interaction with the essential GATA1 cofactor FOG-1 (via the N-terminal finger) are required for gene expression in terminally differentiating megakaryocytes and for platelet production. Moreover, acquired mutations deleting the N-terminal 84 amino acids are specifically detected in megakaryocytic leukemia in human Down syndrome patients. In this study, we have systematically dissected GATA1 domains required for platelet release and control of megakaryocyte growth by ectopically expressing modified GATA1 molecules in primary GATA1-deficient fetal megakaryocyte progenitors. In addition to DNA binding, distinct N-terminal regions, including residues in the first 84 amino acids, promote platelet release and restrict megakaryocyte growth. In contrast, abrogation of GATA1-FOG-1 interaction leads to loss of differentiation, but growth of blocked immature megakaryocytes is controlled. Thus, distinct GATA1 domains regulate terminal megakaryocyte gene expression leading to platelet release and restrain megakaryocyte growth, and these processes can be uncoupled.


2021 ◽  
Vol 26 (4) ◽  
pp. 2846-2854
Author(s):  
NAHLA A.F. ◽  
BADAWY W.Z. ◽  
EL-BANA M.A. ◽  
KASSAB H.A.

Quinoa is recently gaining more interest from many countries as a nutritious substitute and food addition. Proximate chemical analysis of quinoa flour (QF) was estimated. Additionally, the rheological properties of balady bread dough fortified with QF were evaluated. It was found that QF was an ideal source of minerals especially potassium (808.7 mg/100 g) and essential amino acids compared with wheat flour. Moreover, the protein content of bread substituted with QF increased by increasing QF content. Also, the sensory properties of bread were acceptable. There was no noticeable difference (P≤ 0.05) between bread fortified with 10% and control sample. The gluten levels went down by raising the levels of QF from 10 to 40% whilst; the protein content increased from 10 to 40% by rising QF replacement levels. The obtained date suggested that QF could be utilized as fortifying source of protein and nutrients especially, in bakery products.


Sign in / Sign up

Export Citation Format

Share Document