scholarly journals A honey bee symbiont buffers larvae against nutritional stress through lysine supplementation

2022 ◽  
Author(s):  
Audrey J Parish ◽  
Danny W Rice ◽  
Vicki M Tanquary ◽  
Jason M Tennessen ◽  
Irene LG Newton

Honey bees, the worlds most significant agricultural pollinator, have suffered dramatic losses in the last few decades. These losses are largely due to the synergistic effects of multiple stressors, the most pervasive of which is limited nutrition. The effects of poor nutrition are most damaging in the developing larvae of honey bees, who mature into workers unable to meet the needs of their colony. It is therefore essential that we better understand the nutritional landscape experienced by honey bee larvae. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by increasing the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that two distinct cationic amino acid transporters were gained by B. apis ancestors, and the transporter LysE is conserved across all sequenced strains of B. apis. This result suggests that amino acid export is a key feature conserved within the Bombella clade. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest an important role of B. apis as a nutritional mutualist of honey bee larvae.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zih-Ting Chang ◽  
Yu-Feng Huang ◽  
Yue-Wen Chen ◽  
Ming-Ren Yen ◽  
Po-Ya Hsu ◽  
...  

AbstractDeformed wing virus (DWV) prevalence is high in honey bee (Apis mellifera) populations. The virus infects honey bees through vertical and horizontal transmission, leading to behavioural changes, wing deformity, and early mortality. To better understand the impacts of viral infection in the larval stage of honey bees, artificially reared honey bee larvae were infected with DWV (1.55 × 1010 copies/per larva). No significant mortality occurred in infected honey bee larvae, while the survival rates decreased significantly at the pupal stage. Examination of DWV replication revealed that viral replication began at 2 days post inoculation (d.p.i.), increased dramatically to 4 d.p.i., and then continuously increased in the pupal stage. To better understand the impact of DWV on the larval stage, DWV-infected and control groups were subjected to transcriptomic analysis at 4 d.p.i. Two hundred fifty-five differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified. Of these DEGs, 168 genes were downregulated, and 87 genes were upregulated. Gene Ontology (GO) analysis showed that 141 DEGs (55.3%) were categorized into molecular functions, cellular components and biological processes. One hundred eleven genes (38 upregulated and 73 downregulated) were annotated by KO (KEGG Orthology) pathway mapping and involved metabolic pathways, biosynthesis of secondary metabolites and glycine, serine and threonine metabolism pathways. Validation of DEGs was performed, and the related gene expression levels showed a similar tendency to the DEG predictions at 4 d.p.i.; cell wall integrity and stress response component 1 (wsc1), cuticular protein and myo-inositol 2-dehydrogenase (iolG) were significantly upregulated, and small conductance calcium-activated potassium channel protein (SK) was significantly downregulated at 4 d.p.i. Related gene expression levels at different d.p.i. revealed that these DEGs were significantly regulated from the larval stage to the pupal stage, indicating the potential impacts of gene expression levels from the larval to the pupal stages. Taken together, DWV infection in the honey bee larval stage potentially influences the gene expression levels from larvae to pupae and reduces the survival rate of the pupal stage. This information emphasizes the consequences of DWV prevalence in honey bee larvae for apiculture.


2006 ◽  
Vol 46 (1) ◽  
pp. 141 ◽  
Author(s):  
D. C. Somerville ◽  
H. I. Nicol

Pollen pellets collected from honey bees foraging at 62 floral species were analysed for protein and amino acid content and their value for honey bee nutrition was determined. The crude protein levels of all pollen pellets analysed ranged from 9.2% for Hypochoeris radicata (flatweed) to 37.4% for Echium plantagineum (Paterson’s curse) with a mean of 25.9%. Pollen pellets from 15 species were identified as providing protein levels below those acknowledged to satisfy honey bee dietary requirements when they are the only source of pollen available to the honey bee colony. Pollens collected from species of the same genus demonstrated similar protein profiles. Isoleucine was deficient in 38% of the pollens with 69% of eucalypts and related species demonstrating a significant isoleucine deficiency.


Author(s):  
Belén Branchiccela ◽  
Loreley Castelli ◽  
Sebastián Díaz-Cetti ◽  
Ciro Invernizzi ◽  
Yamandú Mendoza ◽  
...  

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Roksana Kruszakin ◽  
Paweł Migdal

So far, larval rearing in vitro has been an important method in the assessment of bee toxicology, particularly in pesticide risk assessment. However, natural products are increasingly used to control honey bee pathogens or to enhance bee immunity, but their effects on honey bee larvae are mostly unknown. In this study, laboratory studies were conducted to determine the effects of including selected aqueous plant infusions in the diet of honey bee (Apis mellifera L.) larvae in vitro. The toxicity of infusions from three different plant species considered to be medicinal plants was evaluated: tansy (Tanacetum vulgare L.), greater celandine (Chelidonium majus L.), and coriander (Coriandrum sativum L.). The impact of each on the survival of the larvae of honey bees was also evaluated. One-day-old larvae were fed a basal diet consisting of distilled water, sugars (glucose and fructose), yeast extract, and freeze-dried royal jelly or test diets in which distilled water was replaced by plant infusions. The proportion of the diet components was adjusted to the age of the larvae. The larvae were fed twice a day. The experiment lasted seven days. Significant statistical differences in survival rates were found between groups of larvae (exposed or not to the infusions of tansy, greater celandine, and coriander). A significant decrease (p < 0.05) in the survival rate was observed in the group with the addition of a coriander herb infusion compared to the control. These results indicate that plant extracts intended to be used in beekeeping should be tested on all development stages of honey bees.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Beata Messyasz ◽  
Boguslawa Leska ◽  
Joanna Fabrowska ◽  
Marta Pikosz ◽  
Adam Cieslak ◽  
...  

AbstractThe effects of the impact of four organic compounds (ascorbic acid, biotin, glucose and sucrose) on ash, protein, fiber, fat and amino acid contents in the freshwater Aegagropila linnaei biomass were examined in 7 and 14 days of cultivations in high concentrations of tested compounds (100 mg L-1). The presence of examined organic compounds had a negligible effect on the development of algae and their biomass composition. There were no significant differences in the amino acids composition in the biomass in the presence of organic compounds compared to the test system. However, the increase in ash content was observed irrespective of the cultivation time in the case of all used organic compounds. Only slight differences in crude fat concentration were observed in the case of 7 days cultivation with ascorbic acid, biotin and sucrose, while the highest increase of ash content was observed after 14 days of supplementation with glucose. None of the compounds affected changes in amino acid content in the Aegagropila linnaei biomass. The results suggest that an environment enriched with the test organic compounds had only minimal, or at most short-term, effects on the algal biomass composition.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 81-81
Author(s):  
Alini Veira ◽  
Luan S Santos ◽  
Alicia Fraga ◽  
Paulo Campos ◽  
Raphael Caetano ◽  
...  

Abstract Recent studies have shown that feed intake, nutrient metabolism and utilization may vary during the 24-h circadian period. In this regard, this study aimed at evaluating the impact on performance from the switching of conventional to sequential feeding programs with diets that differ in amino acid content over the day for growing–finishing pigs. Sixty-eight 25-kg (±2.04) BW barrows were assigned to 4 feeding programs (17 animals per treatment): 1) conventional feeding (CONV), in which pigs received 100% of standardized ileal digestible (SID) AA recommendations for the entire day; 2) sequential feeding (SEQ80-120), providing 80% SID AA recommendations from 2400 to 1159 h and 120% from 1200 to 2359 h; 3) sequential feeding (SEQ70-130) providing 70% SID AA recommendations from 2400 to 1159 h and 130% from 1200 to 2359 h; and 4) sequential feeding (SEQ60-140) providing 60% SID AA recommendations from 2400 to 1159 h and 140% from 1200 to 2359 h. The experimental period lasted 82 d and was subdivided in 3 phases: phase 1 (0 to 28 d), phase 2 (29 to 54 d) and phase 3 (55 to 82 d). The data were analyzed using the MIXED procedure in SAS (SAS Inst. Inc., Cary, NC). SEQ80-120 and SEQ60-140 did not improve performance compared to CONV (P &gt; 0.05). However, ADFI, ADG and BW was higher for SEQ70-130 than CONV during phase 1 (1.49 vs 1.3 kg/d; 0.74 vs 0.65 kg/d; 46.55 vs 43.40 kg, respectively; P &lt; 0.05). During phase 2, BW tended to be higher for SEQ70-130 than CONV (69.20 vs 63.60 kg; P = 0.08). In the entire experimental period, ADFI tended to be higher for SEQ70-130 than CONV (2.08 vs 1.89 kg/d; P = 0.10). According to our results, sequential feeding program improves performance of growing–finishing at the beginning of the period.


2021 ◽  
Author(s):  
Kilea Ward ◽  
Hongmei Li-Byarlay

Molecular damage caused by oxidative stress may lead to organismal aging and resulted in acute mortality in organisms. Oxidative stress resistance and longevity are closely linked. Honey bees are the most important managed pollinator in agriculture but the long-term survival of honey bees is seriously threatened. Feral honey bee colonies displayed persistence to Varroa mites. However, it is unknown whether feral honey bees are stress-resistant or survive longer than managed bee populations. More work is needed to determine the impact of oxidative stress on honey bee health and survival. We used the paired colony design to determine the lifespan and levels of oxidative stress on worker bees from either a feral or a managed colony. Each pair of colonies shared similar foraging resources. Results exhibit longer survival time and lifespans of foragers in feral colonies than the managed colonies. The levels of oxidative stress from the lipid damage of feral colonies are higher than the managed colonies, indicating a tolerant mechanism not a repair mechanism to survive. Our study provided new insights into colony difference of physiology and oxidative stress resistance between feral honey bees and commercial stocks.


2019 ◽  
Author(s):  
Mert Kükrer ◽  
Meral Kence ◽  
Aykut Kence

Intense admixture of honey bee (Apis mellifera L.) populations is mostly attributed to migratory beekeeping practices and replacement of queens and colonies with non-native races or hybrids of different subspecies. These two practices are also heavily carried out in Anatolia and Thrace where 5 subspecies reside naturally.Here, we carried out an analysis of population structure of honey bees sampled from six different regions (n = 250) in order to test the genetic impacts of migratory beekeeping, queen and colony trade and conservation efficacy of isolated regions. A total of 30 microsatellite markers were used in four multiplex reactions.Direct genetic impact of migratory beekeeping was demonstrated first time based on a comparison of assignment of individuals to their geographically native populations where migratory colonies showed less fidelity. We found genetic evidence for them acting as a hybrid zone mobile in space and time, becoming vectors of otherwise local gene combinations.The effects of honey bee trade were revealed by the presence of very high introgression levels from the highly commercial Caucasian bees naturally limited to a narrow range. We also measured the direction and magnitude of this gene flow connected with bee trade.Comparison between regions that are either open to migratory beekeeping or not let us evaluate the status of isolated regions as centers of limited gene flow and showed the importance of establishing such regions.Despite signs of gene flow, our findings confirm high levels of geographically structured genetic diversity of four subspecies of honey bees in Turkey and emphasize the need to develop policies to maintain this diversity.Our overall results might potentially bear a wider interest to the community since they constitute an important attempt to quantify the effects of anthropogenic impacts on established patterns of honey bee diversity. Our measurable and justified findings on migratory beekeeping, queen and colony replacements as well as conservation implications will hopefully be of use for the decision makers and other stakeholders.


2019 ◽  
Vol 14 (2) ◽  
pp. 476-491 ◽  
Author(s):  
Brendan A. Daisley ◽  
Andrew P. Pitek ◽  
John A. Chmiel ◽  
Kait F. Al ◽  
Anna M. Chernyshova ◽  
...  

Abstract American foulbrood (AFB) is a highly virulent disease afflicting honey bees (Apis mellifera). The causative organism, Paenibacillus larvae, attacks honey bee brood and renders entire hives dysfunctional during active disease states, but more commonly resides in hives asymptomatically as inactive spores that elude even vigilant beekeepers. The mechanism of this pathogenic transition is not fully understood, and no cure exists for AFB. Here, we evaluated how hive supplementation with probiotic lactobacilli (delivered through a nutrient patty; BioPatty) affected colony resistance towards a naturally occurring AFB outbreak. Results demonstrated a significantly lower pathogen load and proteolytic activity of honey bee larvae from BioPatty-treated hives. Interestingly, a distinctive shift in the microbiota composition of adult nurse bees occurred irrespective of treatment group during the monitoring period, but only vehicle-supplemented nurse bees exhibited higher P. larvae loads. In vitro experiments utilizing laboratory-reared honey bee larvae showed Lactobacillus plantarum Lp39, Lactobacillus rhamnosus GR-1, and Lactobacillus kunkeei BR-1 (contained in the BioPatty) could reduce pathogen load, upregulate expression of key immune genes, and improve survival during P. larvae infection. These findings suggest the usage of a lactobacilli-containing hive supplement, which is practical and affordable for beekeepers, may be effective for reducing enzootic pathogen-related hive losses.


Sign in / Sign up

Export Citation Format

Share Document