scholarly journals A unique dexamethasone-dependent gene expression profile in the lungs of COVID-19 patients

Author(s):  
Ulrik Fahnoe ◽  
Andreas Ronit ◽  
Ronan M.G. Berg ◽  
Sofie E.G. Joergensen ◽  
Trine H. Mogensen ◽  
...  

Background: It is unknown whether the complex immunopathogenesis of COVID-19 acute respiratory distress syndrome (CARDS) differs from that of non-COVID-19 ARDS. Moreover, the effects of systemic dexamethasone (DXM) treatment on pulmonary immunity in COVID-19 remain insufficiently understood. Objective: To understand immune regulation in the lungs of CARDS and critically ill non-COVID-19 patients through gene expression profiling. Methods: Transcriptomic RNA-seq analysis of bronchoalveolar lavage fluid (BALF) from 21 patients: 13 with CARDS (non-DXM or DXM-treated) and 8 with non-COVID-19 ARDS and/or sepsis (all non-DXM-treated). Functional analysis was performed using gene ontology and a blood transcription module, and gene expression of select pro-inflammatory cytokines, interferon-stimulated genes (ISGs) and auto-IFN antibodies were assessed. Results: Median (range) time of COVID-19 symptoms were 11 (8-20) days and BALF was collected 32 (6-65) hours after intubation. We found 550 and 2173 differentially expressed genes in patients with non-DXM-CARDS and DXM-CARDS, respectively. DXM-CARDS was characterized by upregulation of genes related to pulmonary innate and adaptive immunity, notably B-cell and complement pathway activation, antigen presentation, phagocytosis and FC-gamma receptor signalling. Pro-inflammatory genes were not differentially expressed in CARDS vs. non-COVID-19, nor did they differ according to DXM. Most ISGs were specifically upregulated in CARDS, particularly in non-DXM-CARDS. Auto-IFN autoantibodies were detectable in BALF of some CARDS patients. Conclusion: DXM treatment was not associated with regulation of pro-inflammatory pathways in CARDS but with regulation of other specific local innate and adaptive immune responses. These results challenge the concept of a COVID-19 specific cytokine storm.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 12.2-12
Author(s):  
I. Muller ◽  
M. Verhoeven ◽  
H. Gosselt ◽  
M. Lin ◽  
T. De Jong ◽  
...  

Background:Tocilizumab (TCZ) is a monoclonal antibody that binds to the interleukin 6 receptor (IL-6R), inhibiting IL-6R signal transduction to downstream inflammatory mediators. TCZ has shown to be effective as monotherapy in early rheumatoid arthritis (RA) patients (1). However, approximately one third of patients inadequately respond to therapy and the biological mechanisms underlying lack of efficacy for TCZ remain elusive (1). Here we report gene expression differences, in both whole blood and peripheral blood mononuclear cells (PBMC) RNA samples between early RA patients, categorized by clinical TCZ response (reaching DAS28 < 3.2 at 6 months). These findings could lead to identification of predictive biomarkers for TCZ response and improve RA treatment strategies.Objectives:To identify potential baseline gene expression markers for TCZ response in early RA patients using an RNA-sequencing approach.Methods:Two cohorts of RA patients were included and blood was collected at baseline, before initiating TCZ treatment (8 mg/kg every 4 weeks, intravenously). DAS28-ESR scores were calculated at baseline and clinical response to TCZ was defined as DAS28 < 3.2 at 6 months of treatment. In the first cohort (n=21 patients, previously treated with DMARDs), RNA-sequencing (RNA-seq) was performed on baseline whole blood PAXgene RNA (Illumina TruSeq mRNA Stranded) and differential gene expression (DGE) profiles were measured between responders (n=14) and non-responders (n=7). For external replication, in a second cohort (n=95 therapy-naïve patients receiving TCZ monotherapy), RNA-seq was conducted on baseline PBMC RNA (SMARTer Stranded Total RNA-Seq Kit, Takara Bio) from the 2-year, multicenter, double-blind, placebo-controlled, randomized U-Act-Early trial (ClinicalTrials.gov identifier: NCT01034137) and DGE was analyzed between 84 responders and 11 non-responders.Results:Whole blood DGE analysis showed two significantly higher expressed genes in TCZ non-responders (False Discovery Rate, FDR < 0.05): urotensin 2 (UTS2) and caveolin-1 (CAV1). Subsequent analysis of U-Act-Early PBMC DGE showed nine differentially expressed genes (FDR < 0.05) of which expression in clinical TCZ non-responders was significantly higher for eight genes (MTCOP12, ZNF774, UTS2, SLC4A1, FECH, IFIT1B, AHSP, and SPTB) and significantly lower for one gene (TND2P28M). Both analyses were corrected for baseline DAS28-ESR, age and gender. Expression of UTS2, with a proposed function in regulatory T-cells (2), was significantly higher in TCZ non-responders in both cohorts. Furthermore, gene ontology enrichment analysis revealed no distinct gene ontology or IL-6 related pathway(s) that were significantly different between TCZ-responders and non-responders.Conclusion:Several genes are differentially expressed at baseline between responders and non-responders to TCZ therapy at 6 months. Most notably, UTS2 expression is significantly higher in TCZ non-responders in both whole blood as well as PBMC cohorts. UTS2 could be a promising target for further analyses as a potential predictive biomarker for TCZ response in RA patients in combination with clinical parameters (3).References:[1]Bijlsma JWJ, Welsing PMJ, Woodworth TG, et al. Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet. 2016;388(10042):343-55.[2]Bhairavabhotla R, Kim YC, Glass DD, et al. Transcriptome profiling of human FoxP3+ regulatory T cells. Human Immunology. 2016;77(2):201-13.[3]Gosselt HR, Verhoeven MMA, Bulatovic-Calasan M, et al. Complex machine-learning algorithms and multivariable logistic regression on par in the prediction of insufficient clinical response to methotrexate in rheumatoid arthritis. Journal of Personalized Medicine. 2021;11(1).Disclosure of Interests:None declared


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Weitong Cui ◽  
Huaru Xue ◽  
Lei Wei ◽  
Jinghua Jin ◽  
Xuewen Tian ◽  
...  

Abstract Background RNA sequencing (RNA-Seq) has been widely applied in oncology for monitoring transcriptome changes. However, the emerging problem that high variation of gene expression levels caused by tumor heterogeneity may affect the reproducibility of differential expression (DE) results has rarely been studied. Here, we investigated the reproducibility of DE results for any given number of biological replicates between 3 and 24 and explored why a great many differentially expressed genes (DEGs) were not reproducible. Results Our findings demonstrate that poor reproducibility of DE results exists not only for small sample sizes, but also for relatively large sample sizes. Quite a few of the DEGs detected are specific to the samples in use, rather than genuinely differentially expressed under different conditions. Poor reproducibility of DE results is mainly caused by high variation of gene expression levels for the same gene in different samples. Even though biological variation may account for much of the high variation of gene expression levels, the effect of outlier count data also needs to be treated seriously, as outlier data severely interfere with DE analysis. Conclusions High heterogeneity exists not only in tumor tissue samples of each cancer type studied, but also in normal samples. High heterogeneity leads to poor reproducibility of DEGs, undermining generalization of differential expression results. Therefore, it is necessary to use large sample sizes (at least 10 if possible) in RNA-Seq experimental designs to reduce the impact of biological variability and DE results should be interpreted cautiously unless soundly validated.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Emma L Robinson ◽  
Syed Haider ◽  
Hillary Hei ◽  
Richard T Lee ◽  
Roger S Foo

Heart failure comprises of clinically distinct inciting causes but a consistent pattern of change in myocardial gene expression supports the hypothesis that unifying biochemical mechanisms underlie disease progression. The recent RNA-seq revolution has enabled whole transcriptome profiling, using deep-sequencing technologies. Up to 70% of the genome is now known to be transcribed into RNA, a significant proportion of which is long non-coding RNAs (lncRNAs), defined as polyribonucleotides of ≥200 nucleotides. This project aims to discover whether the myocardium expression of lncRNAs changes in the failing heart. Paired end RNA-seq from a 300-400bp library of ‘stretched’ mouse myocyte total RNA was carried out to generate 76-mer sequence reads. Mechanically stretching myocytes with equibiaxial stretch apparatus mimics pathological hypertrophy in the heart. Transcripts were assembled and aligned to reference genome mm9 (UCSC), abundance determined and differential expression of novel transcripts and alternative splice variants were compared with that of control (non-stretched) mouse myocytes. Five novel transcripts have been identified in our RNA-seq that are differentially expressed in stretched myocytes compared with non-stretched. These are regions of the genome that are currently unannotated and potentially are transcribed into non-coding RNAs. Roles of known lncRNAs include control of gene expression, either by direct interaction with complementary regions of the genome or association with chromatin remodelling complexes which act on the epigenome.Changes in expression of genes which contribute to the deterioration of the failing heart could be due to the actions of these novel lncRNAs, immediately suggesting a target for new pharmaceuticals. Changes in the expression of these novel transcripts will be validated in a larger sample size of stretched myocytes vs non-stretched myocytes as well as in the hearts of transverse aortic constriction (TAC) mice vs Sham (surgical procedure without the aortic banding). In vivo investigations will then be carried out, using siLNA antisense technology to silence novel lncRNAs in mice.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2367-2367
Author(s):  
Mira Jeong ◽  
Deqiang Sun ◽  
Min Luo ◽  
Aysegul Ergen ◽  
Hongcang Gu ◽  
...  

Abstract Abstract 2367 Hematopoietic stem cell (HSC) Aging is a complex process linked to number of changes in gene expression and functional decline of self-renewal and differentiation potential. While epigenetic changes have been implicated in HSC aging, little direct evidence has been generated. DNA methylation is one of the major underlying mechanisms associated with the regulation of gene expression, but changes in DNA methylation patterns with HSC aging have not been characterized. We hypothesize that revealing the genome-wide DNA methylation and transcriptome signatures will lead to a greater understanding of HSC aging. Here, we report the first genome-scale study of epigenomic dynamics during normal mouse HSC aging. We isolated SP-KSL-CD150+ HSC populations from 4, 12, 24 month-old mouse bone marrow and carried out genome-wide reduced representative bisulfite sequencing (RRBS) and identified aging-associated differentially methylated CpGs. Three biological samples were sequenced from each aging group and we obtained 30–40 million high-quality reads with over 30X total coverage on ∼1.1M CpG sites which gives us adequate statistical power to infer methylation ratios. Bisulfite conversion rate of non-CpG cytosines was >99%. We analyzed a variety of genomic features to find that CpG island promoters, gene bodies, 5'UTRs, and 3'UTRs generally were associated with hypermethylation in aging HSCs. Overall, out of 1,777 differentially methylated CpGs, 92.8% showed age-related hypermethylation and 7.2% showed age-related hypomethylation. Gene ontology analyses have revealed that differentially methylated CpGs were significantly enriched near genes associated with alternative splicing, DNA binding, RNA-binding, transcription regulation, Wnt signaling and pathways in cancer. Most interestingly, over 579 splice variants were detected as candidates for age-related hypermethylation (86%) and hypomethylation (14%) including Dnmt3a, Runx1, Pbx1 and Cdkn2a. To quantify differentially expressed RNA-transcripts across the entire transcriptome, we performed RNA-seq and analyzed exon arrays. The Spearman's correlation between two different methods was good (r=0.80). From exon arrays, we identified 586 genes that were down regulated and 363 gene were up regulated with aging (p<0.001). Most interestingly, overall expression of DNA methyl transferases Dnmt1, Dnmt3a, Dnmt3b were down regulated with aging. We also found that Dnmt3a2, the short isoform of Dnmt3a, which lacks the N-terminal region of Dnmt3a and represents the major isoform in ES cells, is more expressed in young HSC. For the RNA-seq analysis, we focused first on annotated transcripts derived from cloned mRNAs and we found 307 genes were down regulated and 1015 gene were up regulated with aging (p<0.05). Secondly, we sought to identify differentially expressed isoforms and also novel transcribed regions (antisense and novel genes). To characterize the genes showing differential regulation, we analyzed their functional associations and observed that the highest scoring annotation cluster was enriched in genes associated with translation, the immune network and hematopoietic cell lineage. We expect that the results of these experiments will reveal the global effect of DNA methylation on transcript stability and the translational state of target genes. Our findings will lend insight into the molecular mechanisms responsible for the pathologic changes associated with aging in HSCs. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Avril M. Harder ◽  
Janna R. Willoughby ◽  
William R. Ardren ◽  
Mark R. Christie

AbstractVariation in among-family transcriptional responses to different environmental conditions can help to identify adaptive genetic variation, even prior to a selective event. Coupling differential gene expression with formal survival analyses allows for the disentanglement of treatment effects, required for understanding how individuals plastically respond to environmental stressors, from the adaptive genetic variation responsible for among-family variation in survival and gene expression. We applied this experimental design to investigate responses to an emerging conservation issue, thiamine (vitamin B1) deficiency, in a threatened population of Atlantic salmon (Salmo salar). Thiamine is an essential vitamin that is increasingly limited in many ecosystems. In Lake Champlain, Atlantic salmon cannot acquire thiamine in sufficient quantities to support natural reproduction; fertilized eggs must be reared in hatcheries and treated with supplemental thiamine. We evaluated transcriptional responses (RNA-seq) to thiamine treatment across families and found 3,616 genes differentially expressed between control (no supplemental thiamine) and treatment individuals. Fewer genes changed expression additively (i.e., equally among families) than non-additively (i.e., family-by-treatment effects) in response to thiamine. Differentially expressed genes were related to known physiological effects of thiamine deficiency, including oxidative stress, cardiovascular irregularities, and neurological abnormalities. We also identified 1,446 putatively adaptive genes that were strongly associated with among-family survival in the absence of thiamine treatment, many of which related to neurogenesis and visual perception. Our results highlight the utility of coupling RNA-seq with formal survival analyses to identify candidate genes that underlie the among-family variation in survival required for an adaptive response to natural selection.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3467-3467
Author(s):  
Douglas RA Silveira ◽  
Prodromos Chatzikyriakou ◽  
Olena Yavorska ◽  
Sarah Mackie ◽  
Roan Hulks ◽  
...  

Abstract Differentiation arrest in acute myeloid leukaemia (AML) results in accumulation of leukaemic progenitors (L-Prog) and bone marrow failure. Mutant isocitrate dehydrogenase enzyme produces d-2-hydroxyglutarate (2HG), which inhibits α-ketoglutarate-dependent dioxygenases, including Jumonji histone demethylases (JKDM) and TET2, but how this causes AML is unclear. Inhibitors of mutant IDH enzyme (mIDHi) restore differentiation in IDH-mutant (mIDH) AML (Amatangelo et al., 2018). Here, we studied transcriptional networks involved using single-cell (SC) gene expression (GEX) and transcription factor (TF) motif accessibility in primary AML treated with the mIDH2 inhibitor enasidenib (ENA) and found that ENA activates cell cycle (CC) and pro-differentiation programmes through increased promoter accessibility of granulocyte-monocyte (GM)-TF targets. We treated patient L-Prog in vitro with ENA or vehicle, and performed SC RNA-seq (Chromium 10x) in 4 responsive (R), and one non-responsive (NR) patient samples in early, mid and late timepoints. GEX signatures were used to annotate cells according to function (undifferentiated [U], early and late GM [EGM and LGM]) and CC states. In R samples, ENA yielded more dividing late-GM at mid-late timepoints than DMSO (18% vs 6.5%), and more terminally differentiated neutrophils at late timepoints (46% vs 16%). Using SCENIC (Aibar et al., 2017) to assign highly differentially-expressed genes to TF motifs, we computed regulatory networks (regulons, 'R'). Expression of the SP1 R was strongly correlated with active proliferation and ENA conditions led to generation of more cells that co-expressed CEBPA R or CEBPE R with SP1 R, emphasising simultaneous engagement of CC and GM programmes. SP1 function is associated with CC and GM differentiation, and silencing of its binding to its targets contributes to AML pathogenesis (Maiques-Diaz et al., 2012). Control and NR samples failed to produce neutrophils, had reduced co-expression of CEBPE/SP1 R and yielded more poorly differentiated cells expressing GATA2 R. At the individual gene level, ENA stimulated downregulation of GATA2, GFI1B, IKZF1/2, and RUNX3 together with upregulation of immediate early genes which respond to cytokine and mitogenic stimuli (EGR1, IER2, AP-1) in early-mid phase. Later there is upregulation of CEBP TFs and effector genes FUT4, ELANE, AZU1 and PRTN3. Interestingly, expression of some GM-TFs (RUNX1, SPI1/PU.1, GFI1) was similar between ENA and DMSO, indicating that gene expression alone was insufficient for GM differentiation. Given the effects of 2-HG on JKDM, we assessed chromatin accessibility and TF binding using SC ATAC-seq. Overall, we had 25% of differentially accessible (DA) peaks, from which 75% were more accessible in ENA than in DMSO. ENA DA peaks were highly enriched in promoters. Using ArchR (Granja et al., 2021), we clustered cells and used ELANE expression levels to compute trajectories in parallel with SC RNA-seq data. ENA peaks were sequentially enriched for CBF/RUNX and GATA families, followed by AP-1 (JUN/FOS) and EGR/CEBP/KLF motifs. Footprinting analysis showed sequential decrease and increase of TF binding for GATA2 and CEBPA/E respectively during ENA-induced differentiation. Although it did not cause higher expression of SPI1/PU.1, ENA induced increased accessibility of its target binding sites at promoters, which included CEBPA/E and GM effectors (MPO, FUT4, PRTN3). This provides a novel mechanism by which ENA induces differentiation of L-prog. Regulatory network analysis around active, differentially expressed TFs at different phases of ENA-induced differentiation showed a switch from a repressive transcriptional landscape driven by stem-progenitor TFs, to one where AP-1 and GM-TFs activate expression of GM-effector genes. We postulate a model where MYC, E2F8 and EGR1 upregulate the CEBP family in early-mid differentiation. In addition to stimulation of promoter accessibility of TFBS, we find that ENA increases accessibility of cis-regulatory elements of CEBP TFs, adding another mechanism by which differentiation of L-Prog occurs. Our data on the mechanism of action of ENA suggest that differentiation arrest in IDHm AML involves suppression of CC and GM differentiation programs in a repressive chromatin landscape, likely via inhibition of KDM6A and demethylation of repressive H3K27me3 marks. Disclosures Silveira: Astellas: Speakers Bureau; Abbvie: Speakers Bureau; Servier/Agios: Research Funding; BMS/Celgene: Research Funding. Hasan: Bristol Myers Squibb: Current Employment. Thakurta: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties. Vyas: Gilead: Honoraria; Astellas: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Takeda: Honoraria; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Janssen: Honoraria; Daiichi Sankyo: Honoraria; Jazz: Honoraria; Pfizer: Honoraria; Novartis: Honoraria. Quek: BMS/Celgene: Research Funding; Servier/Agios: Research Funding.


2017 ◽  
Author(s):  
Zhe Zhang ◽  
Yuanchao Zhang ◽  
Perry Evans ◽  
Asif Chinwalla ◽  
Deanne Taylor

ABSTRACTRNA-seq has become the most prevalent technology for measuring genome-wide gene expression, but the best practices for processing and analysing RNA-seq data are still an open question. Many statistical methods have been developed to identify genes differentially expressed between sample groups from RNA-seq data. These methods differ by their data distribution assumptions, choice of statistical test, and computational resource requirements. Over 25 methods of differential expression detection were validated and made available through a user-friendly web portal, RNA-seq 2G. All methods are suitable for analysing differential gene expression between two groups of samples. They commonly use a read count matrix derived from RNA-seq data as input and statistically compare groups for each gene. The web portal uses a Shiny app front-end and is hosted by a cloud-based server provided by Amazon Web Service. The comparison of methods showed that the data distribution assumption is the major determinant of differences between methods. Most methods are more likely to find that longer genes are differentially expressed, which substantially impacts downstream gene set-level analysis. Combining results from multiple methods can potentially diminish this bias. RNA-seq 2G makes the analysis of RNA-seq data more accessible and efficient, and is freely available at http://rnaseq2g.awsomics.org.


2020 ◽  
Author(s):  
Ercha Hu ◽  
Yuan Meng ◽  
Ying Ma ◽  
Ruiqi Song ◽  
Zhengxiang Hu ◽  
...  

Abstract Background: The ixodid tick Dermacentor marginatus is a vector of many pathogens wide spread in Eurasia. Studies of gene sequence on many tick species have greatly increased the information on tick protective antigen which might have the potential to function as effective vaccine candidates or drug targets for eco-friendly acaricide development. In the current study, RNA-seq was applied to identify D. marginatus sequences and analyze differentially expressed unigenes.Methods: To obtain a broader picture of gene sequences and changes in expression level, RNA-seq was performed to obtain the whole-body transcriptome data of D. marginatus adult female ticks after engorgement and long-term starvation. Subsequently, the real-time quantitative PCR (RT-qPCR) was applied to validate the RNA-seq data.Results: RNA-seq produced 30,251 unigenes, of which 32% were annotated. Gene expression was compared among groups that differed by status as newly molted, starved and engorged female adult ticks. Nearly one third of the unigenes in each group were differentially expressed compared to the other two groups, and the most numerous were genes encoding proteins involved in catalytic and binding activities and apoptosis. Selected up-regulated differentially expressed genes in each group were associated to protein, lipids, carbohydrate and chitin metabolism. Blood-feeding and long-term starvation also caused genes differentially expressed in the defense response and antioxidant response. RT-qPCR results indicated 6 differentially expressed transcripts showed similar trends in expression changes with RNA-seq results confirming that the gene expression profiles in transcriptome data is in consistent with RT-qPCR validation.Conclusions: Obtaining the sequence information of D. marginatus and characterizing the expression pattern of the genes involved in blood-feeding and during starvation would be helpful in understanding molecular physiology of D. marginatus and provides data for anti-tick vaccine and drug development for controlling the tick.


2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 478-478
Author(s):  
Zhichao Fu ◽  
Shenghua Liu ◽  
Jianfei Wang ◽  
Ning He ◽  
Yadong Yang ◽  
...  

478 Background: Bladder cancer is the ninth most common malignancy in the world, approximately 75% of patients are diagnosed with non-muscle invasive bladder cancer (NMIBC). Smoking has been established to be a carcinogenic risk factor of bladder cancer. Nevertheless, the detailed relationship between smoking and progression of NMIBC are poorly understood. In this study, we revealed high expressed genes in smoking patients were significantly related to tumor progression in NMIBC patients. Methods: A total of 54 NMIBC patients including 19 never smokers and 35 smokers (current smokers and previous smokers) were enrolled in this study.The gene expression profiles were obtained by RNA-seq and the differentially expressed genes between smoking and non-smoking patients were identified using DESeq2 .The further analysis of the association between genes expression and patient survival in NMIBC cohorts(Jakob et al., 2016)and IMvigor 210 cohorts(Jonathan et al., 2016)by Kaplan-Meier survival estimate. Results: We identified 46 differentially expressed genes (p<0.05) in smoking and non-somking NMIBC patients. IDO1 and KRT14 gene, which related to bladder cancer progression and poor prognosis, was identified significantly higher expressed in somking group compared with non-smoking and they have a logFC of 2.6,3.9 with FDR 1.83E-5,3.40E-5 respectively. The expression of other genes, including KRT6A, CASP14, SERPINA1, MYO3A and IL20RB, were significantly higher in smoking patients compared to non-somking. Notably, survival data analysis from 476 NMIBC cohorts showed that IL20RB had a significant relationship with poor PFS(p = 0.021) and in the Mvigor 210 Cohort including 310 advanced or metastatic urothelial carcinoma patients treated with atezolizumab, we found that the high expression of IL20RB was significantly related to poor OS(p = 0.002). Conclusions: We identified 14 genes related to tumor progression were significantly higher in smoking NMIBC patients than in non-smoking. Among these genes, the expression of IL20RB was related to the poor prognosis of NMIBC, and it may correlates with reduced clinical benefit of immunotherapeutic in patients with urothelial carcinoma.


Sign in / Sign up

Export Citation Format

Share Document