scholarly journals Hippocampal protein aggregation signatures fully distinguish pathogenic and wildtype UBQLN2 in amyotrophic lateral sclerosis

2022 ◽  
Author(s):  
Kyrah M Thumbadoo ◽  
Birger V Dieriks ◽  
Helen C Murray ◽  
Molly EV Swanson ◽  
Ji Hun Yoo ◽  
...  

Mutations in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD) characterised by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus, cerebellum, and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial ALS or FTD cases not caused by UBQLN2 mutations, particularly C9ORF72-linked cases. This makes the mechanistic role of ubiquilin 2 mutations and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 31 genotypically diverse ALS cases with or without FTD, including four cases with UBQLN2 mutations (resulting in p.P497H, p.P506S, and two cases with p.T487I). Using double-, triple-, and six-label fluorescent immunohistochemistry, we mapped the co-localisation of ubiquilin 2 with phosphorylated TDP-43 (pTDP-43), dipeptide repeat aggregates, and p62, in the hippocampus of controls (n=5), or ALS with or without FTD in sporadic (n=19), unknown familial (n=3), SOD1-linked (n=1), C9ORF72-linked (n=4), and UBQLN2-linked (n=4) cases. We differentiate between i) ubiquilin 2 aggregation together with, or driven by, pTDP-43 or dipeptide repeat proteins, and ii) ubiquilin 2 self-aggregation driven by UBQLN2 gene mutations. Together we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wildtype ubiquilin 2 in ALS with or without FTD, whereby mutant ubiquilin 2 is more prone than wildtype to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene mutations and to understand the mechanisms of UBQLN2-linked disease.

2021 ◽  
Author(s):  
Carley Snoznik ◽  
Valentina Medvedeva ◽  
Jelena Mojsilovic-Petrovic ◽  
Paige Rudich ◽  
James Oosten ◽  
...  

AbstractA hexanucleotide repeat expansion in the C9orf72 gene is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Unconventional translation of the C9orf72 repeat produces dipeptide repeat proteins (DPRs). Previously, we showed that the DPRs (PR)50 and (GR)50 are highly toxic when expressed in C. elegans and this toxicity depends on nuclear localization of the DPR. In an unbiased genome-wide RNAi screen for suppressors of (PR)50 toxicity, we identified 12 genes that consistently suppressed either the developmental arrest and/or paralysis phenotype evoked by (PR)50 expression. All of these genes have vertebrate homologs and 7/12 contain predicted nuclear localization signals. One of these genes was spop-1, the C. elegans homolog of SPOP, a nuclear localized E3 ubiquitin ligase adaptor only found in metazoans. SPOP is also required for (GR)50 toxicity and functions in a genetic pathway that includes cul-3, which is the canonical E3 ligase partner for SPOP. Genetic or pharmacological inhibition of SPOP in mammalian primary spinal cord motor neurons suppressed DPR toxicity without affecting DPR expression levels. Finally, we find that genetic inhibition of bet-1, the C. elegans homolog of the known SPOP ubiquitination targets BRD2/3/4, suppresses the protective effect of SPOP mutations. Together, these data suggest a model in which SPOP promotes the DPR-dependent ubiquitination and degradation of BRD proteins. We speculate the pharmacological manipulation of this pathway, which is currently underway for multiple cancer subtypes, could also represent a novel entry point for therapeutic intervention to treat C9 FTD/ALS.Significance statementThe G4C2 repeat expansion in the C9orf72 gene is a major cause of Fronto-Temporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Unusual translation of the repeat sequence produces two highly toxic dipeptide repeat proteins, PRX and GRX, which accumulate in the brain tissue of individuals with these diseases. Here, we show that PR and GR toxicity in both C. elegans and mammalian neurons depends on the E3 ubiquitin ligase adaptor SPOP. SPOP acts through the bromodomain protein BET-1 to mediate dipeptide toxicity. SPOP inhibitors, which are currently being developed to treat SPOP-dependent renal cancer, also protect neurons against DPR toxicity. Our findings identify a highly conserved and ‘druggable’ pathway that may represent a new strategy for treating these currently incurable diseases.


Author(s):  
Kohsuke Kanekura ◽  
Yuhei Hayamizu ◽  
Masahiko Kuroda

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have been thought as two distinct neurodegenerative diseases. However, recent genetic screening and careful investigations found the genetic and pathological overlap among these disorders. Hexanucleotide expansions in intron 1 of C9orf72 are a leading cause of familial ALS and familial FTD. These expansions facilitate the repeat-associated non-ATG initiated translation (RAN translation), producing five dipeptide repeat proteins (DRPs), including Arg-rich poly(PR: Pro-Arg) and poly-(GR: Gly-Arg) peptides. Arg is a positively charged, highly polar amino acid that facilitates interactions with anionic molecules such as nucleic acids and acidic amino acids via electrostatic forces and aromatic amino acids via cation-pi interaction, suggesting that Arg-rich DRPs underlie the pathophysiology of ALS via Arg-mediated molecular interactions. Arg-rich DRPs have also been reported to induce neurodegeneration in cellular and animal models via multiple mechanisms; however, it remains unclear why the Arg-rich DRPs exhibit such diverse toxic properties, because not all Arg-rich peptides are toxic. In this mini-review, we discuss the current understanding of the pathophysiology of Arg-rich C9orf72 DRPs and introduce recent findings on the role of Arg distribution as a determinant of the toxicity and its contribution to the pathogenesis of ALS.


2021 ◽  
Vol 134 (4) ◽  
pp. jcs256602 ◽  
Author(s):  
Mirjana Malnar ◽  
Boris Rogelj

ABSTRACTThe expanded GGGGCC repeat mutation in the C9orf72 gene is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansion is transcribed to sense and antisense RNA, which form RNA foci and bind cellular proteins. This mechanism of action is considered cytotoxic. Translation of the expanded RNA transcripts also leads to the accumulation of toxic dipeptide repeat proteins (DPRs). The RNA-binding protein splicing factor proline and glutamine rich (SFPQ), which is being increasingly associated with ALS and FTD pathology, binds to sense RNA foci. Here, we show that SFPQ plays an important role in the C9orf72 mutation. Overexpression of SFPQ resulted in higher numbers of both sense and antisense RNA foci and DPRs in transfected human embryonic kidney (HEK) cells. Conversely, reduced SPFQ levels resulted in lower numbers of RNA foci and DPRs in both transfected HEK cells and C9orf72 mutation-positive patient-derived fibroblasts and lymphoblasts. Therefore, we have revealed a role of SFPQ in regulating the C9orf72 mutation that has implications for understanding and developing novel therapeutic targets for ALS and FTD.This article has an associated First Person interview with the first author of the paper.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joni Vanneste ◽  
Thomas Vercruysse ◽  
Steven Boeynaems ◽  
Adria Sicart ◽  
Philip Van Damme ◽  
...  

Abstract Repeat expansions in the C9orf72 gene cause amyotrophic lateral sclerosis and frontotemporal dementia characterized by dipeptide-repeat protein (DPR) inclusions. The toxicity associated with two of these DPRs, poly-GR and poly-PR, has been associated with nucleocytoplasmic transport. To investigate the causal role of poly-GR or poly-PR on active nucleocytoplasmic transport, we measured nuclear import and export in poly-GR or poly-PR expressing Hela cells, neuronal-like SH-SY5Y cells and iPSC-derived motor neurons. Our data strongly indicate that poly-GR and poly-PR do not directly impede active nucleocytoplasmic transport.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Annelies Quaegebeur ◽  
Idoia Glaria ◽  
Tammaryn Lashley ◽  
Adrian M. Isaacs

Abstract A C9orf72 repeat expansion is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis. One of the suggested pathomechanisms is toxicity from dipeptide repeat proteins (DPRs), which are generated via unconventional translation of sense and antisense repeat transcripts with poly-GA, poly-GP and poly-GR being the most abundant dipeptide proteins. Animal and cellular studies highlight a neurotoxic role of poly-GR and poly-PR and to a lesser degree of poly-GA. Human post-mortem studies in contrast have been much less clear on a potential role of DPR toxicity but have largely focused on immunohistochemical methods to detect aggregated DPR inclusions. This study uses protein fractionation and sensitive immunoassays to quantify not only insoluble but also soluble poly-GA, poly-GP and poly-GR concentrations in brain homogenates of FTD patients with C9orf72 mutation across four brain regions. We show that soluble DPRs are less abundant in clinically affected areas (i.e. frontal and temporal cortices). In contrast, the cerebellum not only shows the largest DPR load but also the highest relative DPR solubility. Finally, poly-GR levels and poly-GP solubility correlate with clinical severity. These findings provide the first cross-comparison of soluble and insoluble forms of all sense DPRs and shed light on the distribution and role of soluble DPRs in the etiopathogenesis of human C9orf72-FTD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Joanne L. Sharpe ◽  
Nikki S. Harper ◽  
Duncan R. Garner ◽  
Ryan J. H. West

An intronic hexanucleotide (GGGGCC) expansion in the C9orf72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In the decade following its discovery, much progress has been made in enhancing our understanding of how it precipitates disease. Both loss of function caused by reduced C9orf72 transcript levels, and gain of function mechanisms, triggered by the production of repetitive sense and antisense RNA and dipeptide repeat proteins, are thought to contribute to the toxicity. Drosophila models, with their unrivaled genetic tractability and short lifespan, have played a key role in developing our understanding of C9orf72-related FTD/ALS. There is no C9orf72 homolog in fly, and although this precludes investigations into loss of function toxicity, it is useful for elucidating mechanisms underpinning gain of function toxicity. To date there are a range of Drosophila C9orf72 models, encompassing different aspects of gain of function toxicity. In addition to pure repeat transgenes, which produce both repeat RNA and dipeptide repeat proteins (DPRs), RNA only models and DPR models have been generated to unpick the individual contributions of RNA and each dipeptide repeat protein to C9orf72 toxicity. In this review, we discuss how Drosophila models have shaped our understanding of C9orf72 gain of function toxicity, and address opportunities to utilize these models for further research.


2010 ◽  
Vol 9 (3) ◽  
pp. 268-278 ◽  
Author(s):  
Livia Pasquali ◽  
Riccardo Ruffoli ◽  
Federica Fulceri ◽  
Sara Pietracupa ◽  
Gabriele Siciliano ◽  
...  

2021 ◽  
pp. 1-15
Author(s):  
Vasily Vorobyov ◽  
Alexander Deev ◽  
Frank Sengpiel ◽  
Vladimir Nebogatikov ◽  
Aleksey A. Ustyugov

Background: Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons resulting in muscle atrophy. In contrast to the lower motor neurons, the role of upper (cortical) neurons in ALS is yet unclear. Maturation of locomotor networks is supported by dopaminergic (DA) projections from substantia nigra to the spinal cord and striatum. Objective: To examine the contribution of DA mediation in the striatum-cortex networks in ALS progression. Methods: We studied electroencephalogram (EEG) from striatal putamen (Pt) and primary motor cortex (M1) in ΔFUS(1–359)-transgenic (Tg) mice, a model of ALS. EEG from M1 and Pt were recorded in freely moving young (2-month-old) and older (5-month-old) Tg and non-transgenic (nTg) mice. EEG spectra were analyzed for 30 min before and for 60 min after systemic injection of a DA mimetic, apomorphine (APO), and saline. Results: In young Tg versus nTg mice, baseline EEG spectra in M1 were comparable, whereas in Pt, beta activity in Tg mice was enhanced. In older Tg versus nTg mice, beta dominated in EEG from both M1 and Pt, whereas theta and delta 2 activities were reduced. In younger Tg versus nTg mice, APO increased theta and decreased beta 2 predominantly in M1. In older mice, APO effects in these frequency bands were inversed and accompanied by enhanced delta 2 and attenuated alpha in Tg versus nTg mice. Conclusion: We suggest that revealed EEG modifications in ΔFUS(1–359)-transgenic mice are associated with early alterations in the striatum-cortex interrelations and DA transmission followed by adaptive intracerebral transformations.


2021 ◽  
Vol 22 (2) ◽  
pp. 740
Author(s):  
Enrique Madruga ◽  
Inés Maestro ◽  
Ana Martínez

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that usually results in respiratory paralysis in an interval of 2 to 4 years. ALS shows a multifactorial pathogenesis with an unknown etiology, and currently lacks an effective treatment. The vast majority of patients exhibit protein aggregation and a dysfunctional mitochondrial accumulation in their motoneurons. As a result, autophagy and mitophagy modulators may be interesting drug candidates that mitigate key pathological hallmarks of the disease. This work reviews the most relevant evidence that correlate mitophagy defects and ALS, and discusses the possibility of considering mitophagy as an interesting target in the search for an effective treatment for ALS.


Sign in / Sign up

Export Citation Format

Share Document