scholarly journals How salience enhances inhibitory control: An analysis of electro-cortical mechanisms

2022 ◽  
Author(s):  
J. Leon Kenemans ◽  
Iris Schutte ◽  
Sam Van Bijnen ◽  
H.N. Alexander Logemann

Stop-signal tasks (SSTs) combined with human electro-cortical recordings (Event-Related Potentials, ERPs) have revealed mechanisms associated with successful stopping (relative to failed), presumably contributing to inhibitory control. The corresponding ERP signatures have been labeled stop N1 (+/- 100-ms latency), stop N2 (200 ms), and stop P3 (160-250 ms), and argued to reflect more proactive (N1) versus more reactive (N2, P3) mechanisms. However, stop N1 and stop N2, as well as latencies of stop-P3, appear to be quite inconsistent across studies. The present work addressed the possible influence of stop-signal salience, expecting high salience to induce clear stop N1s but reduced stop N2s, and short-latency stop P3s. Three SST varieties were combined with high-resolution EEG. An imperative visual (go) stimulus was occasionally followed by a subsequent (stop) stimulus that signalled to withhold the just initiated response. Stop-Signal Reaction Times (SSRTs) decreased linearly from visual-low to visual-high-salience to auditory. Auditory Stop N1 was replicated. A C1-like visual evoked potential (latency < 100 ms) was observed only with high salience, but not robustly associated with successful versus failed stops. Using the successful-failed contrast a visual stop-N1 analogue (112-156 ms post-stop-signal) was identified, as was right-frontal stop N2, but neither was sensitive to salience. Stop P3 had shorter latency for high than for low salience, and the extent of the early high-salience stop P3 correlated inversely with SSRT. These results suggest that salience-enhanced inhibitory control as manifest in SSRTs is associated with reactive rather than proactive electrocortical mechanisms.

Author(s):  
Graciela C. Alatorre-Cruz ◽  
Heather Downs ◽  
Darcy Hagood ◽  
Seth T. Sorensen ◽  
D. Keith Williams ◽  
...  

Author(s):  
Tania Moretta ◽  
Giulia Buodo

AbstractGiven the current literature debate on whether or not Problematic Social Network Sites Use (PSNSU) can be considered a behavioral addiction, the present study was designed to test whether, similarly to addictive behaviors, PSNSU is characterized by a deficit in inhibitory control in emotional and addiction-related contexts. Twenty-two problematic Facebook users and 23 nonproblematic users were recruited based on their score on the Problematic Facebook Use Scale. The event-related potentials were recorded during an emotional Go/Nogo Task, including Facebook-related, unpleasant, pleasant, and neutral pictures. The amplitudes of the Nogo-N2 and the Nogo-P3 were computed as measures of the detection of response conflict and response inhibition, respectively. Reaction times and accuracy also were measured. The results showed that problematic users were less accurate on both Go and Nogo trials than nonproblematic users, irrespective of picture content. For problematic users only, the Nogo-P3 amplitude was lower to Facebook-related, pleasant, and neutral than to unpleasant stimuli, suggesting less efficient inhibition with natural and Facebook-related rewards. Of note, all participants were slower to respond to Facebook-related and pleasant Go trials compared with unpleasant and neutral pictures. Consistently, the Nogo-N2 amplitude was larger to Facebook-related than all other picture contents in both groups. Overall, the findings suggest that PSNSU is associated with reduced inhibitory control. These results should be considered in the debate about the neural correlates of PSNSU, suggesting more similarities than differences between PSNSU and addictive behaviors.


2005 ◽  
Vol 63 (2a) ◽  
pp. 228-234 ◽  
Author(s):  
Fernanda Puga ◽  
Heloisa Veiga ◽  
Maurício Cagy ◽  
Kaleb McDowell ◽  
Roberto Piedade ◽  
...  

Benzodiazepines have been used in the pharmacological treatment of anxiety for over four decades. However, very few studies have combined bromazepam and event-related potentials (ERP). The present study aimed at investigating the modulatory effects of this drug on brain dynamics. Specifically, the effects of bromazepam (3mg) on the P300 component of the ERP were tested in a double-blind experiment. The sample, consisting of 15 healthy subjects (7 male and 8 female), was submitted to a visual discrimination task, which employed the "oddball" paradigm. Electrophysiological (P300) and behavioral measures (stroop, digit span, and reaction time) were analyzed across three experimental conditions: placebo 1, placebo 2, and bromazepam. Results suggest that the effects of bromazepam (3mg) on cognitive processes are not apparent. In spite of what seems irrefutable in current literature, bromazepam did not produce evident effects on the behavioral and electrophysiological variables analyzed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Meng-Tien Hsieh ◽  
Hsinjie Lu ◽  
Chia-I Lin ◽  
Tzu-Han Sun ◽  
Yi-Ru Chen ◽  
...  

The present study aimed to use event-related potentials with the stop-signal task to investigate the effects of trait anxiety on inhibitory control, error monitoring, and post-error adjustments. The stop-signal reaction time (SSRT) was used to evaluate the behavioral competence of inhibitory control. Electrophysiological signals of error-related negativity (ERN) and error positivity (Pe) were used to study error perception and error awareness, respectively. Post-error slowing (PES) was applied to examine the behavioral adjustments after making errors. The results showed that SSRT and PES did not differ significantly between individuals with high trait anxiety (HTA) and those with low trait anxiety (LTA). However, individuals with HTA demonstrated reduced ERN amplitudes and prolonged Pe latencies than those with LTA. Prolonged Pe latencies were also significantly associated with poorer post-error adjustments. In conclusion, HTA led to reduced cortical responses to error monitoring. Furthermore, inefficient conscious awareness of errors might lead to maladaptive post-error adjustments.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2020 ◽  
Vol 9 (3) ◽  
pp. 785-796
Author(s):  
Jianfeng Wang ◽  
Bing Dai

AbstractBackground and aimsImpaired behavioral inhibitory control (BIC) is known to play a crucial role in addictive behavior. However, research has been inconclusive as to whether this is also the case for cybersex addiction. This study aimed to investigate the time course of BIC in male individuals with tendencies towards cybersex addiction (TCA) using event-related potentials (ERPs) and to provide neurophysiological evidence of their deficient BIC.MethodsThirty-six individuals with TCA and 36 healthy controls (HCs) were given a Two-Choice Oddball task that required them to respond differently to frequent standard stimuli (images of people) and infrequent deviant stimuli (pornographic images) within 1,000 ms. Electroencephalography (EEG) was recorded as the participants performed the task.ResultsDespite the similarity of standard stimuli between the groups in terms of reaction times (RTs), the RTs of the TCA group to deviant stimuli were much slower than those of the HC group. The behavioral difference was accompanied by group differences in the averaged amplitudes of N2 (200–300 ms) and P3 (300–500 ms) components in the deviant-standard difference wave. More specifically, compared to the HC group, the TCA group demonstrated smaller N2 and P3 amplitude differences for deviant than standard stimuli.Discussion and conclusionsIndividuals with TCA were more impulsive than HC participants and shared neuropsychological and ERP characteristics of substance use disorder or behavioral addictions, which supports the view that cybersex addiction can be conceptualized as a behavioral addiction.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs.Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition.Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs.Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.nctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2002 ◽  
Vol 13 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Stefan R. Schweinberger ◽  
Thomas Klos ◽  
Werner Sommer

Abstract: We recorded reaction times (RTs) and event-related potentials (ERPs) in patients with unilateral lesions during a memory search task. Participants memorized faces or abstract words, which were then recognized among new ones. The RT deficit found in patients with left brain damage (LBD) for words increased with memory set size, suggesting that their problem relates to memory search. In contrast, the RT deficit found in patients with RBD for faces was apparently related to perceptual encoding, a conclusion also supported by their reduced P100 ERP component. A late slow wave (720-1720 ms) was enhanced in patients, particularly to words in patients with LBD, and to faces in patients with RBD. Thus, the slow wave was largest in the conditions with most pronounced performance deficits, suggesting that it reflects deficit-related resource recruitment.


Sign in / Sign up

Export Citation Format

Share Document