scholarly journals Myeloid-biased HSC require Semaphorin 4A from the bone marrow niche for self-renewal under stress and life-long persistence

2022 ◽  
Author(s):  
Dorsa Toghani ◽  
Sharon Zeng ◽  
Elmir Mahammadov ◽  
Edie I. Crosse ◽  
Negar Seyedhassantehrani ◽  
...  

Tissue stem cells are hierarchically organized. Those that are most primitive serve as key drivers of regenerative response but the signals that selectively preserve their functional integrity are largely unknown. Here, we identify a secreted factor, Semaphorin 4A (Sema4A), as a specific regulator of myeloid-biased hematopoietic stem cells (myHSC), which are positioned at the top of the HSC hierarchy. Lack of Sema4A leads to exaggerated myHSC (but not downstream balanced HSC) proliferation after acute inflammatory stress, indicating that Sema4A enforces myHSC quiescence. Strikingly, aged Sema4A knock-out myHSC expand but almost completely lose reconstitution capacity. The effect of Sema4A is non cell-autonomous, since upon transplantation into Sema4A-deficient environment, wild-type myHSC excessively proliferate but fail to engraft long-term. Sema4A constrains inflammatory signaling in myHSC and acts via a surface receptor Plexin-D1. Our data support a model whereby the most primitive tissue stem cells critically rely on a dedicated signal from the niche for self-renewal and life-long persistence.

Author(s):  
Ruzhica Bogeska ◽  
Paul Kaschutnig ◽  
Malak Fawaz ◽  
Ana-Matea Mikecin ◽  
Marleen Büchler-Schäff ◽  
...  

AbstractHematopoietic stem cells (HSCs) are canonically defined by their capacity to maintain the HSC pool via self-renewal divisions. However, accumulating evidence suggests that HSC function is instead preserved by sustaining long-term quiescence. Here, we study the kinetics of HSC recovery in mice, following an inflammatory challenge that induces HSCs to exit dormancy. Repeated inflammatory challenge resulted in a progressive depletion of functional HSCs, with no sign of later recovery. Underlying this observation, label retention experiments demonstrated that self-renewal divisions were absent or extremely rare during challenge, as well as during any subsequent recovery period. While depletion of functional HSCs held no immediate consequences, young mice exposed to inflammatory challenge developed blood and bone marrow hypocellularity in old age, similar to elderly humans. The progressive, irreversible attrition of HSC function demonstrates that discreet instances of inflammatory stress can have an irreversible and therefore cumulative impact on HSC function, even when separated by several months. These findings have important implications for our understanding of the role of inflammation as a mediator of dysfunctional tissue maintenance and regeneration during ageing.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 796-796
Author(s):  
Hui Yu ◽  
Hongmei Shen ◽  
Xianmin Song ◽  
Paulina Huang ◽  
Tao Cheng

Abstract The G1-phase is a critical window during the cell cycle in which stem cell self-renewal may be balanced with differentiation and apoptosis. Increasing evidence suggests that the cyclin-dependent kinase inhibitors (CKIs) such as p21Cip1/Waf1, p27kip1, p16INK4A, and p18INK4C (p21, p27, p16 and p18 hereafter) are involved in stem cell self-renewal, as largely demonstrated in murine hematopoietic stem cells (HSCs). For example, we have recently demonstrated a significant increase of HSC self-renewal in the absence of p18 (Yuan et al, Nature Cell Biology 2004). But the actual roles of these CKIs in HSCs appear to be distinct as p21 and p18 have opposite effects (Yu H et al, ASH 2004) whereas p16 has a limited effect (Stepanova et al, Blood 2005) on HSC exhaustion after serial bone marrow transfer. Like p18, however, p27 was recently reported to also inhibit HSC self-renewal due to the fact that the competitive repopulating units (CRUs) were increased in p27−/− mouse bone marrow (Walkley et al, Nature Cell Biology 2005) in contrast to the results in a previous report (Cheng T et al, Nature Medicine 2000). To further gauge the impact of p18 versus p27 on the long-term repopulating ability (LTRA) of HSCs, we have generated different congenic strains (CD45.1 and CD45.2) of p18−/− or p27−/− mice in the C57BL/6 background, allowing us to compare them with the competitive repopulation model in the same genetic background. The direct comparison of LTRA between p18−/− and p27−/− HSCs was assessed with the competitive bone marrow transplantation assay in which equal numbers of p18−/− (CD45.2) and p27−/− cells (CD45.1) were co-transplanted. Interestingly, the p18−/− genotype gradually dominated the p27−/− genotype in multiple hematopoietic lineages and p18−/− HSCs showed 4-5 times more LTRA than p27−/− HSCs 12 months after cBMT. Further self-renewal potential of HSCs was examined with secondary transplantation in which primarily transplanted p18−/− or p27−/− cells were equally mixed with wild-type unmanipulated cells. Notably, while the p18−/− cells continued to outcompete the wild-type cells as we previously observed, the p27−/− cells did not behave so in the secondary recipients. Based on the flow cytometric measurement and bone marrow cellularity, we estimated that transplanted p18−/− HSCs (defined with the CD34−LKS immunophenotype) had undergone a 230-fold expansion, while transplanted p27−/− and wild-type HSCs had only achieved a 6.6- and 2.4-fold expansion in the secondary recipients respectively. We further calculated the yield of bone marrow nucleated cells (BMNCs) per HSC. There were approximately 44 x 103, 20.6 x 103, and 15 x 103 BMNCs generated per CD34−LKS cell in p18−/−, p27−/− and wild-type transplanted recipients respectively. Therefore, the dramatic expansion of p18−/− HSCs in the hosts was not accompanied by decreased function per stem cell. Our current study demonstrates that hematopoietic engraftment in the absence of p18 is more advantageous than that in the absence of p27, perhaps due to a more specific role of p18 on self-renewal of the long-term repopulating HSCs.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 382-382 ◽  
Author(s):  
Katherine Y King ◽  
Megan T Baldridge ◽  
David C Weksberg ◽  
Margaret A Goodell

Abstract Abstract 382 Hematopoietic stem cells (HSCs) are a self-renewing population of bone marrow cells that give rise to all of the cellular elements of the blood and retain enormous proliferative potential in vivo. We have a growing understanding that the controls on HSC proliferation are tied in part to regulation by the immune system—specifically, that HSC proliferation and mobilization can be stimulated by the immune cytokines interferon-alpha and interferon-gamma (IFNg). Our previous work has demonstrated that HSC quiescence and function are aberrant in mice lacking the immunity-related GTPase Irgm1 (also Lrg47). Indeed, the bone marrow of Irgm1-deficient animals at baseline mimics the bone marrow of wild type animals that have been stimulated with IFNg. We hypothesized that the HSC defects in Irgm1-deficient animals are due to overabundant IFNg signaling, and that Irgm1 normally serves to dampen the stimulatory effects of IFNg on HSCs. To test this hypothesis, we used RNA expression profiling to compare gene expression in wild type versus Irgm1-deficient mice. We found that interferon-dependent signaling is globally upregulated in the HSCs of Irgm1-deficient mice. Next we generated Irgm1-/-IFNgR1-/- and Irgm1-/-Stat1-/- double knock out animals. In contrast to the phenotype of Irgm1 single knock out mutants, the hyperproliferation and self-renewal defects in HSCs were both rescued in the double knock out animals, indicating that IFNg signaling is required for manifestation of the Irgm1-deficient phenotype. Futhermore, we found that Irgm1 is expressed in HSCs in a Stat1- and IFNgR-dependent fashion, suggesting that it forms a negative feedback loop for IFNg signaling in the HSC population. Collectively, our results indicate that Irgm1 is a powerful negative regulator of IFNg-dependent stimulation in HSCs. These findings demonstrate that IFNg provides a significant stimulus for HSC proliferation even in the absence of infection, and that IFNg-dependent signaling must be tightly regulated to preserve HSC self-renewal capacity. This study provides evidence that the Irgm1 protein can serve as a link between immunity and regulation of hematopoiesis at the level of the stem cell. We speculate that utilization of Irgm1 for its immune functions may detract from its ability to regulate HSC self-renewal capacity, thus ultimately contributing to myelosuppression and increased risk of death from chronic infections such as tuberculosis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (2) ◽  
pp. 295-302 ◽  
Author(s):  
Adam M. Greenbaum ◽  
Leila D. Revollo ◽  
Jill R. Woloszynek ◽  
Roberto Civitelli ◽  
Daniel C. Link

Abstract There is evidence suggesting that N-cadherin expression on osteoblast lineage cells regulates hematopoietic stem cell (HSC) function and quiescence. To test this hypothesis, we conditionally deleted N-cadherin (Cdh2) in osteoblasts using Cdh2flox/flox Osx-Cre mice. N-cadherin expression was efficiently ablated in osteoblast lineage cells as assessed by mRNA expression and immunostaining of bone sections. Basal hematopoiesis is normal in these mice. In particular, HSC number, cell cycle status, long-term repopulating activity, and self-renewal capacity were normal. Moreover, engraftment of wild-type cells into N-cadherin–deleted recipients was normal. Finally, these mice responded normally to G-CSF, a stimulus that mobilizes HSCs by inducing alterations to the stromal micro-environment. In conclusion, N-cadherin expression in osteoblast lineage cells is dispensable for HSC maintenance in mice.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3283-3283
Author(s):  
Dorsa Toghani ◽  
Sharon Zeng ◽  
Elmir Mahammadov ◽  
Edie Crosse ◽  
Amogh Pradeep ◽  
...  

Abstract A subset of hematopoietic stem cells with inherent myeloid and platelet bias (myHSC) is positioned at the top of hematopoietic hierarchy and considered the most primitive. Notably, lower proliferative output of myHSC correlates with a greater capacity for self-renewal indicating that quiescence is essential for their function. Hence, excessive myHSC expansion following inflammatory challenge is likely to put them at a higher risk of proliferation-induced damage. Given that inflammatory stress is unavoidable throughout live, we hypothesized that myHSC may uniquely depend on quiescence-inducing signals for their protection and long-term persistence. However, the nature of these signals remains largely unexplored. We have previously performed proximity-based analysis of the bone marrow niche to identify novel regulators of HSC quiescence (Silberstein et al, Cell Stem Cell 2016). Briefly, we defined the transcriptional profiles of osteolineage cells which were located in closer proximity to a transplanted HSC (proximal cells), and designated secreted factors with higher expression level in proximal cells as putative regulators of HSC quiescence. For the current study, we selected Semaphorin4a (Sema4a) - a known regulator of neural development, angiogenesis and immune response with no previously documented role in hematopoiesis - and examined its impact on myHSC function during inflammatory stress. We found that Sema4a was expressed in the niche cells (endothelium and osteoprogenitors) in mice and humans. Recombinant Sema4a reduced proliferation of mouse and human hematopoietic stem and progenitor cells ex vivo. Baseline analysis of young Sema4aKO mice revealed mild anemia, thrombocytosis, myeloid bias and a slight reduction in the proportion of HSC in the G0 phase suggesting that Sema4a regulates HSC quiescence and differentiation in vivo. Upon Poly(I:C) injection, Sema4aKO myHSC (Lin -Kit +Sca +CD48 -CD34 -CD150 high) displayed markedly increased cycling and upregulation of alpha-interferon and JAK-STAT signaling while "balanced" HSC (Lin -Kit +Sca +CD48 -CD34 -CD150 low) were unaffected. Similar exaggerated proliferative response in Sema4aKO myHSC was observed upon injection with IL-1β. Next, we investigated the long-term impact of inflammation-induced loss of myHSC quiescence. Aged Sema4aKO mice developed anemia, thrombocytosis, neutrophilia. Most significantly, we observed a two-fold expansion of phenotypic myHSC (but not balanced HSC) which displayed proliferative senescence, increased cellular stress and premature differentiation by scRNA-Seq, and a complete loss of reconstitution upon transplantation. In contrast, young Sema4aKO HSC showed a higher level of post-transplant chimerism consistent with their prior "pre-activated" state. Thus, loss of myHSC quiescence leads to increased sensitivity to inflammatory stressors and enhanced myHSC response but eventual collapse of regenerative function. In order to determine if the microenvironment served as a critical source of Sema4a for myHSC, WT myHSC were transplanted into lethally irradiated WT and Sema4aKO hosts. Strikingly, the majority of Sema4aKO recipients died while all WT recipients survived. Intra-vital imaging at 24 hours revealed a greater number of cells and clusters in Sema4aKO recipients suggesting that excessive early myHSC proliferation led to impaired self-renewal and engraftment failure. Finally, we found that Plexin D1 acts as a functional receptor for Sema4a on myHSC, since Plexin D1-deficient myHSC recapitulated the post-transplant phenotype of young Sema4aKO myHSC described above. Taken together, our data demonstrate that under the conditions of increased myeloid demand, protection from proliferative stress is critical for preserving myHSC function, and highlight a critical but previously unrecognized role for Sema4a-PlxnD1 axis in this process. Our study suggests that therapeutic augmentation of myHSC quiescence may alleviate the negative impact in inflammatory signaling, serve to improve marrow function in inflammatory diseases, and prevent development of myeloid malignancy. Disclosures Radtke: Ensoma Inc.: Consultancy; 47 Inc.: Consultancy. Kiem: Ensoma Inc.: Consultancy, Current holder of individual stocks in a privately-held company; Homology Medicines: Consultancy; VOR Biopharma: Consultancy. Scadden: Fate Therapeutics: Current holder of individual stocks in a privately-held company; Editas Medicines: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Clear Creek Bio: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Dainippon Sumitomo Pharma: Other: sponsored research; FOG Pharma: Consultancy; Agios Pharmaceuticals: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Garuda Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; VCanBio: Consultancy; Inzen Therapeutics: Membership on an entity's Board of Directors or advisory committees; LifeVaultBio: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Magenta Therapeutics: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Huihong Zeng ◽  
Jiaoqi Cheng ◽  
Ying Fan ◽  
Yingying Luan ◽  
Juan Yang ◽  
...  

Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.


2018 ◽  
Vol 2 (20) ◽  
pp. 2732-2743 ◽  
Author(s):  
Ki Soon Kim ◽  
De-Liang Zhang ◽  
Gennadiy Kovtunovych ◽  
Manik C. Ghosh ◽  
Hayden Ollivierre ◽  
...  

AbstractHeme oxygenase 1 (HMOX1), the inducible enzyme that catabolizes the degradation of heme into biliverdin, iron, and carbon monoxide, plays an essential role in the clearance of senescent and damaged red blood cells, systemic iron homeostasis, erythropoiesis, vascular hemostasis, and oxidative and inflammatory stress responses. In humans, HMOX1 deficiency causes a rare and lethal disease, characterized by severe anemia, intravascular hemolysis, as well as vascular and tissue damage. Hmox1 knockout (KO) mice recapitulated the phenotypes of HMOX1-deficiency patients and could be rescued by bone marrow (BM) transplantation that engrafted donor’s hematopoietic stem cells into the recipient animals after myeloablation. To find better therapy and elucidate the contribution of macrophages to the pathogenesis of HMOX1-deficiency disease, we infused wild-type (WT) macrophages into Hmox1 KO mice. Results showed that WT macrophages engrafted and proliferated in the livers of Hmox1 KO mice, which corrected the microcytic anemia, rescued the intravascular hemolysis, restored iron homeostasis, eliminated kidney iron overload and tissue damage, and provided long-term protection. These results showed that a single macrophage infusion delivered a long-term curative effect in Hmox1 KO mice, obviating the need for BM transplantation, and suggested that the HMOX1 disease stems mainly from the loss of viable reticuloendothelial macrophages. Our work provides new insights into the etiology of HMOX1 deficiency and demonstrates the potential of infusion of WT macrophages to prevent disease in patients with HMOX1 deficiency and potentially other macrophage-related diseases.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


2006 ◽  
Vol 103 (9) ◽  
pp. 3304-3309 ◽  
Author(s):  
C. J. Luckey ◽  
D. Bhattacharya ◽  
A. W. Goldrath ◽  
I. L. Weissman ◽  
C. Benoist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document