scholarly journals Semi-field evaluations of three botanically derived repellents against the blacklegged tick, Ixodes scapularis (Acari: Ixodidae)

2022 ◽  
Author(s):  
Xia Lee ◽  
Colin Wong ◽  
Joel Coats ◽  
Susan M Paskewitz

Three compounds derived from botanicals sources, ethyl perillyl carbonate, geranyl isovalerate, and citronellyl cyclobutane carboxylate, were tested for repellent activity against Ixodes scapularis Say in a semi-field trial. Tick drags were treated with the compounds or with N, N-diethyl-m-toluamide (DEET) at high (0.25mg/cm2) or low (0.15mg/cm2) concentrations. Negative controls included untreated drags and drags treated with acetone, the carrier for all repellents. Freshly treated drags (within 20 minutes) were used to collect I. scapularis ticks at a county park in Wisconsin. To assess effectiveness, we measured tick encounter rates, detachment rate, and time to detachment. None of the repellent treatments resulted in significantly fewer encounters compared to both control treatments. However, the percentage of ticks that detached within 3 min was significantly higher on drags treated with repellents compared to controls. DEET was the most effective, repelling 69.7 - 87% of ticks by 3 min, but the effectiveness of the three test compounds was still high, ranging from 42% to 87% of ticks detaching by 3 min. For time to detachment, there were no significant differences between DEET and the three test compounds. We conclude that these botanically-derived repellents were effective against I. scapularis in a semi-field trial and could be viable alternatives to DEET.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark P. Nelder ◽  
Curtis B. Russell ◽  
Antonia Dibernardo ◽  
Katie M. Clow ◽  
Steven Johnson ◽  
...  

Abstract Background The universal nature of the human–companion animal relationship and their shared ticks and tick-borne pathogens offers an opportunity for improving public and veterinary health surveillance. With this in mind, we describe the spatiotemporal trends for blacklegged tick (Ixodes scapularis) submissions from humans and companion animals in Ontario, along with pathogen prevalence. Methods We tested tick samples submitted through passive surveillance (2011–2017) from humans and companion animals for Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti. We describe pathogen prevalence in ticks from humans and from companion animals and constructed univariable Poisson and negative binomial regression models to explore the spatiotemporal relationship between the rates of tick submissions by host type. Results During the study, there were 17,230 blacklegged tick samples submitted from humans and 4375 from companion animals. Tick submission rates from companion animals were higher than expected in several public health units (PHUs) lacking established tick populations, potentially indicating newly emerging populations. Pathogen prevalence in ticks was higher in PHUs where established blacklegged tick populations exist. Borrelia burgdorferi prevalence was higher in ticks collected from humans (maximum likelihood estimate, MLE = 17.5%; 95% confidence interval, CI 16.97–18.09%) than from companion animals (9.9%, 95% CI 9.15–10.78%). There was no difference in pathogen prevalence in ticks by host type for the remaining pathogens, which were found in less than 1% of tested ticks. The most common co-infection B. burgdorferi + B. miyamotoi occurred in 0.11% of blacklegged ticks from humans and animals combined. Borrelia burgdorferi prevalence was higher in unengorged (21.9%, 95% CI 21.12–22.65%) than engorged ticks (10.0%, 95% CI 9.45–10.56%). There were no consistent and significant spatiotemporal relationships detected via regression models between the annual rates of submission of each host type. Conclusions While B. burgdorferi has been present in blacklegged ticks in Ontario for several decades, other tick-borne pathogens are also present at low prevalence. Blacklegged tick and pathogen surveillance data can be used to monitor risk in human and companion animal populations, and efforts are under consideration to unite surveillance efforts for the different target populations. Graphic Abstract


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Mark P. Nelder ◽  
Curtis B. Russell ◽  
Nina Jain Sheehan ◽  
Beate Sander ◽  
Stephen Moore ◽  
...  

2013 ◽  
Vol 4 (1-2) ◽  
pp. 63-71 ◽  
Author(s):  
Janice Van Zee ◽  
William C. Black ◽  
Michael Levin ◽  
Jerome Goddard ◽  
Joshua Smith ◽  
...  

2008 ◽  
pp. 530-530
Author(s):  
Colin Berry ◽  
Jason M. Meyer ◽  
Marjorie A. Hoy ◽  
John B. Heppner ◽  
William Tinzaara ◽  
...  

Healthcare ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 59 ◽  
Author(s):  
John D. Scott ◽  
Emily L. Pascoe ◽  
Muhammad S. Sajid ◽  
Janet E. Foley

This study provides a novel method of documenting established populations of bird-feeding ticks. Single populations of the blacklegged tick, Ixodes scapularis, and the rabbit tick, Haemaphysalis leporispalustris, were revealed in southwestern Québec, Canada. Blacklegged tick nymphs and, similarly, larval and nymphal rabbit ticks were tested for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (Bbsl), using PCR and the flagellin (flaB) gene, and 14 (42%) of 33 of blacklegged tick nymphs tested were positive. In contrast, larval and nymphal H. leporsipalustris ticks were negative for Bbsl. The occurrence of Bbsl in I. scapularis nymphs brings to light the presence of a Lyme disease endemic area at this songbird nesting locality. Because our findings denote that this area is a Lyme disease endemic area, and I. scapularis is a human-biting tick, local residents and outdoor workers must take preventive measures to avoid tick bites. Furthermore, local healthcare practitioners must include Lyme disease in their differential diagnosis.


2006 ◽  
Vol 43 (5) ◽  
pp. 957-961 ◽  
Author(s):  
Gabrielle Dietrich ◽  
Marc C. Dolan ◽  
Javier Peralta-Cruz ◽  
Jason Schmidt ◽  
Joseph Piesman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document