scholarly journals Impaired spatial memory in adult vitamin D deficient BALB/c mice is associated with reductions in spine density, nitric oxide, and neural nitric oxide synthase in the hippocampus

2022 ◽  
Author(s):  
Md. Mamun Al-Amin ◽  
Robert K P Sullivan ◽  
Suzanne Alexander ◽  
David A Carter ◽  
Dana Bradford ◽  
...  

Vitamin D deficiency is prevalent in adults and is associated with cognitive impairment. However, the mechanism by which adult vitamin D (AVD) deficiency affects cognitive function remains unclear. We examined spatial memory impairment in AVD-deficient BALB/c mice and its underlying mechanism by measuring spine density, long term potentiation (LTP), nitric oxide (NO), neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS) in the hippocampus. Adult male BALB/c mice were fed a control or vitamin D deficient diet for 20 weeks. Spatial memory performance was measured using an active place avoidance (APA) task, where AVD-deficient mice had reduced latency entering the shock zone compared to controls. We characterised hippocampal spine morphology in the CA1 and dentate gyrus (DG) and made electrophysiological recordings in the hippocampus of behaviourally naive mice to measure LTP. We next measured NO, as well as glutathione, lipid peroxidation and oxidation of protein products and quantified hippocampal immunoreactivity for nNOS and eNOS. Spine morphology analysis revealed a significant reduction in the number of mushroom spines in the CA1 dendrites but not in the DG. There was no effect of diet on LTP. However, hippocampal NO levels were depleted whereas other oxidation markers were unaltered by AVD deficiency. We also showed a reduced nNOS, but not eNOS, immunoreactivity. Finally, vitamin D supplementation for 10 weeks to AVD-deficient mice restored nNOS immunoreactivity to that seen in in control mice. Our results suggest that lower levels of NO, reduced nNOS immunostaining contribute to hippocampal-dependent spatial learning deficits in AVD-deficient mice.

1998 ◽  
Vol 140 (3) ◽  
pp. 378-386 ◽  
Author(s):  
Y. Itzhak ◽  
Syed F. Ali ◽  
Julio L. Martin ◽  
M. Dean Black ◽  
Paul L. Huang

2003 ◽  
Vol 94 (6) ◽  
pp. 2534-2544 ◽  
Author(s):  
Wieslaw Kozak ◽  
Anna Kozak

Male C57BL/6J mice deficient in nitric oxide synthase (NOS) genes (knockout) and control (wild-type) mice were implanted intra-abdominally with battery-operated miniature biotelemeters (model VMFH MiniMitter, Sunriver, OR) to monitor changes in body temperature. Intravenous injection of lipopolysaccharide (LPS; 50 μg/kg) was used to trigger fever in response to systemic inflammation in mice. To induce a febrile response to localized inflammation, the mice were injected subcutaneously with pure turpentine oil (30 μl/animal) into the left hindlimb. Oral administration (gavage) of N G-monomethyl-l-arginine (l-NMMA) for 3 days (80 mg · kg−1 · day−1in corn oil) before injection of pyrogens was used to inhibit all three NOSs ( N G-monomethyl-d-arginine acetate salt and corn oil were used as control). In normal male C57BL/6J mice, l-NMMA inhibited the LPS-induced fever by ∼60%, whereas it augmented fever by ∼65% in mice injected with turpentine. Challenging the respective NOS knockout mice with LPS and with l-NMMA revealed that inducible NOS and neuronal NOS isoforms are responsible for the induction of fever to LPS, whereas endothelial NOS (eNOS) is not involved. In contrast, none of the NOS isoforms appeared to trigger fever to turpentine. Inhibition of eNOS, however, exacerbates fever in mice treated with l-NMMA and turpentine, indicating that eNOS participates in the antipyretic mechanism. These data support the hypothesis that nitric oxide is a regulator of fever. Its action differs, however, depending on the pyrogen used and the NOS isoform.


2000 ◽  
Vol 33 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Hiroko Matsushita ◽  
Yoshihiro Takeuchi ◽  
Kitaro Kosaka ◽  
Shinji Fushiki ◽  
Mitsuhiro Kawata ◽  
...  

2006 ◽  
Vol 14 (7S_Part_27) ◽  
pp. P1456-P1456
Author(s):  
Ashwini Hariharan ◽  
Yu Jing ◽  
Nicola D. Collie ◽  
Hu Zhang ◽  
Ping Liu

Sign in / Sign up

Export Citation Format

Share Document