scholarly journals Rapid and specific degradation of endogenous proteins in mouse models using auxin-inducible degrons

2022 ◽  
Author(s):  
Lewis A Macdonald ◽  
Gillian C A Taylor ◽  
Jennifer M Brisbane ◽  
Ersi Christodoulou ◽  
Lucy Scott ◽  
...  

Auxin-inducible degrons are a chemical genetic tool for targeted protein degradation and are widely used to study protein function in cultured mammalian cells. Here we develop CRISPR-engineered mouse lines that enable rapid and highly specific degradation of tagged endogenous proteins in vivo. Most but not all cell types are competent for degradation. Using mouse genetics, we show that degradation kinetics depend upon the dose of the tagged protein, ligand, and the E3 ligase subunit Tir1. Rapid degradation of condensin I and condensin II, two essential regulators of mitotic chromosome structure, revealed that both complexes are individually required for cell division in precursor lymphocytes, but not in their differentiated peripheral lymphocyte derivatives. This generalisable approach provides unprecedented temporal control over the dose of endogenous proteins in mouse models, with implications for studying essential biological pathways and modelling drug activity in mammalian tissues.

2019 ◽  
Vol 294 (28) ◽  
pp. 10877-10885 ◽  
Author(s):  
Da-Wei Lin ◽  
Benjamin P. Chung ◽  
Jia-Wei Huang ◽  
Xiaorong Wang ◽  
Lan Huang ◽  
...  

Work in yeast models has benefitted tremendously from the insertion of epitope or fluorescence tags at the native gene locus to study protein function and behavior under physiological conditions. In contrast, work in mammalian cells largely relies on overexpression of tagged proteins because high-quality antibodies are only available for a fraction of the mammalian proteome. CRISPR/Cas9-mediated genome editing has recently emerged as a powerful genome-modifying tool that can also be exploited to insert various tags and fluorophores at gene loci to study the physiological behavior of proteins in most organisms, including mammals. Here we describe a versatile toolset for rapid tagging of endogenous proteins. The strategy utilizes CRISPR/Cas9 and microhomology-mediated end joining repair for efficient tagging. We provide tools to insert 3×HA, His6FLAG, His6-Biotin-TEV-RGSHis6, mCherry, GFP, and the auxin-inducible degron tag for compound-induced protein depletion. This approach and the developed tools should greatly facilitate functional analysis of proteins in their native environment.


2014 ◽  
Vol 25 (22) ◽  
pp. 3610-3618 ◽  
Author(s):  
Robert Mahen ◽  
Birgit Koch ◽  
Malte Wachsmuth ◽  
Antonio Z. Politi ◽  
Alexis Perez-Gonzalez ◽  
...  

Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells.


2003 ◽  
Vol 2003 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Lindsay J. Stanbridge ◽  
Vincent Dussupt ◽  
Norman J. Maitland

Current curative strategies for prostate cancer are restricted to the primary tumour, and the effect of treatments to control metastatic disease is not sustained. Therefore, the application of gene therapy to prostate cancer is an attractive alternative. Baculoviruses are highly restricted insect viruses, which can enter, but not replicate in mammalian cells. Baculoviruses can incorporate large amounts of extra genetic material, and will express transgenes in mammalian cells when under the control of a mammalian or strong viral promoter. Successful gene delivery has been achieved both in vitro and in vivo and into both dividing and nondividing cells, which is important since prostate cancers divide relatively slowly. In addition, the envelope protein gp64 is sufficiently mutable to allow targeted transduction of particular cell types. In this review, the advantages of using baculoviruses for prostate cancer gene therapy are explored, and the mechanisms of viral entry and transgene expression are described.


2008 ◽  
Vol 8 (6) ◽  
pp. 159-162 ◽  
Author(s):  
Peter B. Crino

The recent development of several mouse models for tuberous sclerosis complex (TSC) provides in vivo systems to test new therapies for the neurological manifestations of TSC. Rapamycin is known to antagonize the effects of loss of TSC protein function in vitro and in mouse TSC models, rapamycin can prevent seizures and improve learning task performance. These findings provide new hope for TSC patients suffering from intractable seizures and possibly, for those with autism and cognitive disabilities.


Author(s):  
Michael J. Ziegler ◽  
Klaus Yserentant ◽  
Valentin Dunsing ◽  
Volker Middel ◽  
Antoni J. Gralak ◽  
...  

AbstractDirect control of protein interactions by chemically induced protein proximity holds great potential for both cell and synthetic biology as well as therapeutic applications. Low toxicity, orthogonality and excellent cell permeability are important criteria for chemical inducers of proximity (CIPs), in particular for in vivo applications. Here, we present the use of the agrochemical mandipropamid (Mandi) as a highly efficient CIP in cell culture systems and living organisms. Mandi specifically induces complex formation between a sixfold mutant of the plant hormone receptor pyrabactin resistance 1 (PYR1) and abscisic acid insensitive (ABI). It is orthogonal to other plant hormone-based CIPs and rapamycin-based CIP systems. We demonstrate the applicability of the Mandi system for rapid and efficient protein translocation in mammalian cells and zebrafish embryos, protein network shuttling and manipulation of endogenous proteins.


2020 ◽  
Author(s):  
WG Pembroke ◽  
CL Hartl ◽  
DH Geschwind

AbstractMouse models have allowed for the direct interrogation of genetic effects on molecular, physiological and behavioral brain phenotypes. However, it is unknown to what extent neurological or psychiatric traits may be human or primate-specific and therefore, which components can be faithfully recapitulated in mouse models. We identify robust co-expression modules reflecting whole brain and regional patterns of gene expression and compare conservation of co-expression in 116 independent data sets derived from human, mouse and non-human primate representing more than 15,000 total samples. We observe greater co-expression changes occurring on the human lineage than mouse, and substantial regional variation that highlights cerebral cortex as the most diverged region. Cell type specific modules are the most divergent across the brain, compared with those that represent basic metabolic processes. Among these, glia are the most divergent, three times that of neurons. We show that regulatory sequence divergence explains a significant fraction of co-expression divergence. Similarly, protein coding sequence constraint parallels co-expression conservation, such that genes with loss of function intolerance are enriched in neuronal, rather than glial modules. We also identify dozens of human disease risk genes, such as COMT, PSEN-1, LRRK2, and SNCA, with highly divergent co-expression between mouse and primates or human. We show that 3D human brain organoids recapitulate in vivo co-expression modules representing several human cell types, which along with our analysis of human-mouse disease gene divergence, serve as a foundational resource to guide disease modeling and its interpretation.


2006 ◽  
Vol 87 (8) ◽  
pp. 2263-2268 ◽  
Author(s):  
Dennis J. Pierro ◽  
Ma Isabel Salazar ◽  
Barry J. Beaty ◽  
Ken E. Olson

A full-length infectious cDNA clone (ic) was constructed from the genome of the dengue virus type 2 (DENV-2) Jamaica83 1409 strain, pBAC1409ic, by using a bacterial artifical chromosome plasmid system. Infectious virus was generated and characterized for growth in cell culture and for infection in Aedes aegypti mosquitoes. During construction, an isoleucine to methionine (Ile→Met) change was found at position 6 in the envelope glycoprotein sequence between low- and high-passage DENV-2 1409 strains. In vitro-transcribed genomic RNA of 1409ic with E6-Ile produced infectious virions following electroporation in mosquito cells, but not mammalian cells, while 1409ic RNA with an E6-Met mutation produced virus in both cell types. Moreover, DENV-2 1409 with the E6-Ile residue produced syncytia in C6/36 cell culture, whereas viruses with E6-Met did not. However, in vitro cell culture-derived growth-curve data and in vivo mosquito-infection rates revealed that none of the analysed DENV-2 strains differed from each other.


1987 ◽  
Vol 7 (6) ◽  
pp. 2148-2154 ◽  
Author(s):  
R D McKinnon ◽  
P Danielson ◽  
M A Brow ◽  
F E Bloom ◽  
J G Sutcliffe

We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture.


2018 ◽  
Vol 294 (5) ◽  
pp. 1568-1578 ◽  
Author(s):  
Colin T. Stomberski ◽  
Hua-Lin Zhou ◽  
Liwen Wang ◽  
Focco van den Akker ◽  
Jonathan S. Stamler

Protein S-nitrosylation mediates a large part of nitric oxide's influence on cellular function by providing a fundamental mechanism to control protein function across different species and cell types. At steady state, cellular S-nitrosylation reflects dynamic equilibria between S-nitrosothiols (SNOs) in proteins and small molecules (low-molecular-weight SNOs) whose levels are regulated by dedicated S-nitrosylases and denitrosylases. S-Nitroso-CoA (SNO-CoA) and its cognate denitrosylases, SNO-CoA reductases (SCoRs), are newly identified determinants of protein S-nitrosylation in both yeast and mammals. Because SNO-CoA is a minority species among potentially thousands of cellular SNOs, SCoRs must preferentially recognize this SNO substrate. However, little is known about the molecular mechanism by which cellular SNOs are recognized by their cognate enzymes. Using mammalian cells, molecular modeling, substrate-capture assays, and mutagenic analyses, we identified a single conserved surface Lys (Lys-127) residue as well as active-site interactions of the SNO group that mediate recognition of SNO-CoA by SCoR. Comparing SCoRK127Aversus SCoRWT HEK293 cells, we identified a SNO-CoA–dependent nitrosoproteome, including numerous metabolic protein substrates. Finally, we discovered that the SNO-CoA/SCoR system has a role in mitochondrial metabolism. Collectively, our findings provide molecular insights into the basis of specificity in SNO-CoA–mediated metabolic signaling and suggest a role for SCoR-regulated S-nitrosylation in multiple metabolic processes.


1995 ◽  
Vol 269 (4) ◽  
pp. E613-E622 ◽  
Author(s):  
T. L. Wood

The ability to manipulate genetic information in the germ line of mice has provided powerful approaches to study gene function in vivo. These approaches have included the establishment of mouse lines in which a specified gene or genes are overexpressed, ectopically expressed, or deleted. Transgenic and gene-targeted mouse lines have been used extensively to study the function of the insulin-like growth factors (IGF), IGF-I and IGF-II, and their receptors and binding proteins. In the IGF system, these technologies have elucidated the roles of the IGFs in fetal and somatic growth and have demonstrated a critical role for this system in transformation and tumorigenesis. Analysis of combinatorial crosses of gene-targeted mouse lines also has suggested the existence of an as yet unidentified IGF receptor that regulates fetal growth. Similar approaches using transgenic and gene-targeted mouse models have been initiated to study the in vivo functions of the IGF binding proteins. These mouse models provide important tools to test specific functional questions in vivo as well as to study the long-term physiological consequences of chronic gene alterations.


Sign in / Sign up

Export Citation Format

Share Document