scholarly journals Multi-omic data helps improve prediction of personalised tumor suppressors and oncogenes

2022 ◽  
Author(s):  
Malvika Sudhakar ◽  
Raghunathan Rengaswamy ◽  
Karthik Raman

The progression of tumorigenesis starts with a few mutational and structural driver events in the cell. Various cohort-based computational tools exist to identify driver genes but require a large number of samples to produce reliable results. Many studies use different methods to identify driver mutations/genes from mutations that have no impact on tumour progression; however, a small fraction of patients show no mutational events in any known driver genes. Current unsupervised methods map somatic and expression data onto a network to identify the perturbation in the network. Our method is the first machine learning model to classify genes as tumour suppressor gene (TSG), oncogene (OG) or neutral, thus assigning the functional impact of the gene in the patient. In this study, we develop a multi-omic approach, PIVOT (Personalised Identification of driVer OGs and TSGs), to train on experimentally or computationally validated mutational and structural driver events. Given the lack of any gold standards for the identification of personalised driver genes, we label the data using four strategies and, based on classification metrics, show gene-based labelling strategies perform best. We build different models using SNV, RNA, and multi-omic features to be used based on the data available. Our models trained on multi-omic data improved predictions compared to mutation and expression data, achieving an accuracy >0.99 for BRCA, LUAD and COAD datasets. We show network and expression-based features contribute the most to PIVOT. Our predictions on BRCA, COAD and LUAD cancer types reveal commonly altered genes such as TP53, and PIK3CA, which are predicted drivers for multiple cancer types. Along with known driver genes, our models also identify new driver genes such as PRKCA, SOX9 and PSMD4. Our multi-omic model labels both CNV and mutations with a more considerable contribution by CNV alterations. While predicting labels for genes mutated in multiple samples, we also label rare driver events occurring in as few as one sample. We also identify genes with dual roles within the same cancer type. Overall, PIVOT labels personalised driver genes as TSGs and OGs and also identifies rare driver genes. PIVOT is available at https://github.com/RamanLab/PIVOT.

2016 ◽  
Vol 14 (06) ◽  
pp. 1650031 ◽  
Author(s):  
Ana B. Pavel ◽  
Cristian I. Vasile

Cancer is a complex and heterogeneous genetic disease. Different mutations and dysregulated molecular mechanisms alter the pathways that lead to cell proliferation. In this paper, we explore a method which classifies genes into oncogenes (ONGs) and tumor suppressors. We optimize this method to identify specific (ONGs) and tumor suppressors for breast cancer, lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and colon adenocarcinoma (COAD), using data from the cancer genome atlas (TCGA). A set of genes were previously classified as ONGs and tumor suppressors across multiple cancer types (Science 2013). Each gene was assigned an ONG score and a tumor suppressor score based on the frequency of its driver mutations across all variants from the catalogue of somatic mutations in cancer (COSMIC). We evaluate and optimize this approach within different cancer types from TCGA. We are able to determine known driver genes for each of the four cancer types. After establishing the baseline parameters for each cancer type, we identify new driver genes for each cancer type, and the molecular pathways that are highly affected by them. Our methodology is general and can be applied to different cancer subtypes to identify specific driver genes and improve personalized therapy.


2019 ◽  
Author(s):  
Pramod Chandrashekar ◽  
Navid Ahmadinejad ◽  
Junwen Wang ◽  
Aleksandar Sekulic ◽  
Jan B. Egan ◽  
...  

ABSTRACTFunctions of cancer driver genes depend on cellular contexts that vary substantially across tissues and organs. Distinguishing oncogenes (OGs) and tumor suppressor genes (TSGs) for each cancer type is critical to identifying clinically actionable targets. However, current resources for context-aware classifications of cancer drivers are limited. In this study, we show that the direction and magnitude of somatic selection of missense and truncating mutations of a gene are suggestive of its contextual activities. By integrating these features with ratiometric and conservation measures, we developed a computational method to categorize OGs and TSGs using exome sequencing data. This new method, named genes under selection in tumors (GUST) shows an overall accuracy of 0.94 when tested on manually curated benchmarks. Application of GUST to 10,172 tumor exomes of 33 cancer types identified 98 OGs and 179 TSGs, >70% of which promote tumorigenesis in only one cancer type. In broad-spectrum drivers shared across multiple cancer types, we found heterogeneous mutational hotspots modifying distinct functional domains, implicating the synchrony of convergent and divergent disease mechanisms. We further discovered two novel OGs and 28 novel TSGs with high confidence. The GUST program is available at https://github.com/liliulab/gust. A database with pre-computed classifications is available at https://liliulab.shinyapps.io/gust


2018 ◽  
Author(s):  
Collin Tokheim ◽  
Rachel Karchin

SummaryLarge-scale cancer sequencing studies of patient cohorts have statistically implicated many genes driving cancer growth and progression, and their identification has yielded substantial translational impact. However, a remaining challenge is to increase the resolution of driver prediction from the gene level to the mutation level, because mutation-level predictions are more closely aligned with the goal of precision cancer medicine. Here we present CHASMplus, a computational method, that is uniquely capable of identifying driver missense mutations, including those specific to a cancer type, as evidenced by significantly superior performance on diverse benchmarks. Applied to 8,657 tumor samples across 32 cancer types in The Cancer Genome Atlas, CHASMplus identifies over 4,000 unique driver missense mutations in 240 genes, supporting a prominent role for rare driver mutations. We show which TCGA cancer types are likely to yield discovery of new driver missense mutations by additional sequencing, which has important implications for public policy.SignificanceMissense mutations are the most frequent mutation type in cancers and the most difficult to interpret. While many computational methods have been developed to predict whether genes are cancer drivers or whether missense mutations are generally deleterious or pathogenic, there has not previously been a method to score the oncogenic impact of a missense mutation specifically by cancer type, limiting adoption of computational missense mutation predictors in the clinic. Cancer patients are routinely sequenced with targeted panels of cancer driver genes, but such genes contain a mixture of driver and passenger missense mutations which differ by cancer type. A patient’s therapeutic response to drugs and optimal assignment to a clinical trial depends on both the specific mutation in the gene of interest and cancer type. We present a new machine learning method honed for each TCGA cancer type, and a resource for fast lookup of the cancer-specific driver propensity of every possible missense mutation in the human exome.


2016 ◽  
Author(s):  
Francesco Iorio ◽  
Luz Garcia-Alonso ◽  
Jonathan S. Brammeld ◽  
Iñigo Martincorena ◽  
David R. Wille ◽  
...  

ABSTRACTCancer hallmarks are evolutionary traits required by a tumour to develop. While extensively characterised, the way these traits are achieved through the accumulation of somatic mutations in key biological pathways is not fully understood. To shed light on this subject, we characterised the landscape of pathway alterations associated with somatic mutations observed in 4,415 patients across ten cancer types, using 374 orthogonal pathway gene-sets mapped onto canonical cancer hallmarks. Towards this end, we developed SLAPenrich: a computational method based on population-level statistics, freely available as an open source R package. Assembling the identified pathway alterations into sets of hallmark signatures allowed us to connect somatic mutations to clinically interpretable cancer mechanisms. Further, we explored the heterogeneity of these signatures, in terms of ratio of altered pathways associated with each individual hallmark, assuming that this is reflective of the extent of selective advantage provided to the cancer type under consideration. Our analysis revealed the predominance of certain hallmarks in specific cancer types, thus suggesting different evolutionary trajectories across cancer lineages.Finally, although many pathway alteration enrichments are guided by somatic mutations in frequently altered high-confidence cancer genes, excluding these driver mutations preserves the hallmark heterogeneity signatures, thus the detected hallmarks’ predominance across cancer types. As a consequence, we propose the hallmark signatures as a ground truth to characterise tails of infrequent genomic alterations and identify potential novel cancer driver genes and networks.


2019 ◽  
Author(s):  
Robert Noble ◽  
John T Burley ◽  
Cécile Le Sueur ◽  
Michael E Hochberg

AbstractIntratumour heterogeneity holds promise as a prognostic biomarker in multiple cancer types. However, the relationship between this marker and its clinical impact is mediated by an evolutionary process that is not well understood. Here we employ a spatial computational model of tumour evolution to assess when, why and how intratumour heterogeneity can be used to forecast tumour growth rate, an important predictor of clinical progression. We identify three conditions that can lead to a positive correlation between clonal diversity and subsequent growth rate: diversity is measured early in tumour development; selective sweeps are rare; and/or tumours vary in the rate at which they acquire driver mutations. Opposite conditions typically lead to negative correlation. Our results further suggest that prognosis can be better predicted on the basis of both clonal diversity and genomic instability than either factor alone. Nevertheless, we find that, for predicting tumour growth, clonal diversity is likely to perform worse than conventional measures of tumour stage and grade. We thus offer explanations – grounded in evolutionary theory – for empirical findings in various cancers. Our work informs the search for new prognostic biomarkers and contributes to the development of predictive oncology.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1289-D1301 ◽  
Author(s):  
Tao Wang ◽  
Shasha Ruan ◽  
Xiaolu Zhao ◽  
Xiaohui Shi ◽  
Huajing Teng ◽  
...  

Abstract The prevalence of neutral mutations in cancer cell population impedes the distinguishing of cancer-causing driver mutations from passenger mutations. To systematically prioritize the oncogenic ability of somatic mutations and cancer genes, we constructed a useful platform, OncoVar (https://oncovar.org/), which employed published bioinformatics algorithms and incorporated known driver events to identify driver mutations and driver genes. We identified 20 162 cancer driver mutations, 814 driver genes and 2360 pathogenic pathways with high-confidence by reanalyzing 10 769 exomes from 33 cancer types in The Cancer Genome Atlas (TCGA) and 1942 genomes from 18 cancer types in International Cancer Genome Consortium (ICGC). OncoVar provides four points of view, ‘Mutation’, ‘Gene’, ‘Pathway’ and ‘Cancer’, to help researchers to visualize the relationships between cancers and driver variants. Importantly, identification of actionable driver alterations provides promising druggable targets and repurposing opportunities of combinational therapies. OncoVar provides a user-friendly interface for browsing, searching and downloading somatic driver mutations, driver genes and pathogenic pathways in various cancer types. This platform will facilitate the identification of cancer drivers across individual cancer cohorts and helps to rank mutations or genes for better decision-making among clinical oncologists, cancer researchers and the broad scientific community interested in cancer precision medicine.


2018 ◽  
Vol 15 (143) ◽  
pp. 20170967 ◽  
Author(s):  
Dominik Wodarz ◽  
Alan C. Newell ◽  
Natalia L. Komarova

Carcinogenesis is an evolutionary process whereby cells accumulate multiple mutations. Besides the ‘driver mutations’ that cause the disease, cells also accumulate a number of other mutations with seemingly no direct role in this evolutionary process. They are called passenger mutations. While it has been argued that passenger mutations render tumours more fragile due to reduced fitness, the role of passenger mutations remains understudied. Using evolutionary computational models, we demonstrate that in the context of tumour suppressor gene inactivation (and hence fitness valley crossing), the presence of passenger mutations can accelerate the rate of evolution by reducing overall population fitness and increasing the relative fitness of intermediate mutants in the fitness valley crossing pathway. Hence, the baseline rate of tumour suppressor gene inactivation might be faster than previously thought. Conceptually, parallels are found in the field of turbulence and pattern formation, where instabilities can be driven by perturbations that are damped (disadvantageous), but provide a richer set of pathways such that a system can achieve some desired goal more readily. This highlights, through a number of novel parallels, the relevance of physical sciences in oncology.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Xiaobao Dong ◽  
Dandan Huang ◽  
Xianfu Yi ◽  
Shijie Zhang ◽  
Zhao Wang ◽  
...  

AbstractMutation-specific effects of cancer driver genes influence drug responses and the success of clinical trials. We reasoned that these effects could unbalance the distribution of each mutation across different cancer types, as a result, the cancer preference can be used to distinguish the effects of the causal mutation. Here, we developed a network-based framework to systematically measure cancer diversity for each driver mutation. We found that half of the driver genes harbor cancer type-specific and pancancer mutations simultaneously, suggesting that the pervasive functional heterogeneity of the mutations from even the same driver gene. We further demonstrated that the specificity of the mutations could influence patient drug responses. Moreover, we observed that diversity was generally increased in advanced tumors. Finally, we scanned potentially novel cancer driver genes based on the diversity spectrum. Diversity spectrum analysis provides a new approach to define driver mutations and optimize off-label clinical trials.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Erdogan Taskesen ◽  
Sjoerd M. H. Huisman ◽  
Ahmed Mahfouz ◽  
Jesse H. Krijthe ◽  
Jeroen de Ridder ◽  
...  

Abstract The use of genome-wide data in cancer research, for the identification of groups of patients with similar molecular characteristics, has become a standard approach for applications in therapy-response, prognosis-prediction, and drug-development. To progress in these applications, the trend is to move from single genome-wide measurements in a single cancer-type towards measuring several different molecular characteristics across multiple cancer-types. Although current approaches shed light on molecular characteristics of various cancer-types, detailed relationships between patients within cancer clusters are unclear. We propose a novel multi-omic integration approach that exploits the joint behavior of the different molecular characteristics, supports visual exploration of the data by a two-dimensional landscape, and inspection of the contribution of the different genome-wide data-types. We integrated 4,434 samples across 19 cancer-types, derived from TCGA, containing gene expression, DNA-methylation, copy-number variation and microRNA expression data. Cluster analysis revealed 18 clusters, where three clusters showed a complex collection of cancer-types, squamous-cell-carcinoma, colorectal cancers, and a novel grouping of kidney-cancers. Sixty-four samples were identified outside their tissue-of-origin cluster. Known and novel patient subgroups were detected for Acute Myeloid Leukemia’s, and breast cancers. Quantification of the contributions of the different molecular types showed that substructures are driven by specific (combinations of) molecular characteristics.


Sign in / Sign up

Export Citation Format

Share Document