scholarly journals AAV11 permits efficient retrograde targeting of projection neurons

2022 ◽  
Author(s):  
Zengpeng Han ◽  
Nengsong Luo ◽  
Jiaxin Kou ◽  
Lei Li ◽  
Wenyu Ma ◽  
...  

Viral tracers that permit efficient retrograde targeting of projection neurons are powerful vehicles for structural and functional dissections of the neural circuit and for the treatment of brain diseases. Recombinant adeno-associated viruses (rAAVs) are the most potential candidates because they are low-toxic with high-level transgene expression and minimal host immune responses. Currently, some rAAVs based on capsid engineering for retrograde tracing have been widely used in the analysis and manipulation of neural circuits, but suffer from brain area selectivity and inefficient retrograde transduction in certain neural connections. Here, we discovered that the recombinant adeno-associated virus 11 (rAAV11) exhibits potent retrograde labeling of projection neurons with enhanced efficiency to rAAV2-retro in some neural connections. Combined with calcium recording technology, rAAV11 can be used to monitor neuronal activities by expressing Cre recombinase or calcium-sensitive functional probe. In addition, we further showed the suitability of rAAV11 for astrocyte targeting. These properties make rAAV11 a promising tool for the mapping and manipulation of neural circuits and gene therapy of some neurological and neurodegenerative disorders.

2021 ◽  
Author(s):  
Lloyd E. Russell ◽  
Henry W.P. Dalgleish ◽  
Rebecca Nutbrown ◽  
Oliver Gauld ◽  
Dustin Herrmann ◽  
...  

Recent advances combining two-photon calcium imaging and two-photon optogenetics with digital holography now allow us to read and write neural activity in vivo at cellular resolution with millisecond temporal precision. Such 'all-optical' techniques enable experimenters to probe the impact of functionally defined neurons on neural circuit function and behavioural output with new levels of precision. This protocol describes the experimental strategy and workflow for successful completion of typical all-optical interrogation experiments in awake, behaving head-fixed mice. We describe modular procedures for the setup and calibration of an all-optical system, the preparation of an indicator and opsin-expressing and task-performing animal, the characterization of functional and photostimulation responses and the design and implementation of an all-optical experiment. We discuss optimizations for efficiently selecting and targeting neuronal ensembles for photostimulation sequences, as well as generating photostimulation response maps from the imaging data that can be used to examine the impact of photostimulation on the local circuit. We demonstrate the utility of this strategy using all-optical experiments in three different brain areas - barrel cortex, visual cortex and hippocampus - using different experimental setups. This approach can in principle be adapted to any brain area for all-optical interrogation experiments to probe functional connectivity in neural circuits and for investigating the relationship between neural circuit activity and behaviour.


2020 ◽  
Author(s):  
Kunzhang Lin ◽  
Xin Zhong ◽  
Lei Li ◽  
Min Ying ◽  
Tian Yang ◽  
...  

Abstract Recombinant adeno-associated viruses (rAAVs), especially which permit efficient gene transfer to neurons from axonal terminals or across the blood-brain barrier, are useful vehicles for the structural and functional studies of neural circuit, and for the treatment of many gene-deficient brain diseases that needs to compensate for the correct genes to every cell in the whole brain. However, AAVs with these two advantages have not been reported. Here, we describe a new capsid engineering method, which draws on advantage combination of different capsids, and aims to yield a capsid that can provide more alternative routes of administration, which are more suitable for wide-scale transduction of the CNS. A new AAV variant, AAV9-Retro, was developed by inserting the 10-mer peptide fragment from AAV2-Retro into the capsid of AAV9, and the biodistribution properties were evaluated in mice. By intracranial and intravenous injection in the mice, we found that AAV9-Retro can retrogradely infect projection neurons with efficiency comparable to AAV2-Retro, and retains the characteristic of AAV9 that can transport across the nervous system. Our strategy provides a new tool for the manipulation of neural circuits, and for the future preclinical and clinical treatment of some neurological and neurodegenerative disorders.


2020 ◽  
Author(s):  
Kunzhang Lin ◽  
Xin Zhong ◽  
Lei Li ◽  
Min Ying ◽  
Tian Yang ◽  
...  

Abstract Recombinant adeno-associated viruses (rAAVs), particularly those that permit efficient gene transfer to neurons from axonal terminals or across the blood–brain barrier, are useful vehicles for structural and functional studies of the neural circuit and for the treatment of many gene-deficient brain diseases that need to compensate for the correct genes in every cell in the whole brain. However, AAVs with these two advantages have not been reported. Here, we describe a new capsid engineering method, which exploits the combination of different capsids and aims to yield a capsid that can provide more alternative routes of administration that are more suitable for the wide-scale transduction of the central nervous system (CNS). A new AAV variant, AAV9-Retro, was developed by inserting the 10-mer peptide fragment from AAV2-Retro into the capsid of AAV9, and the biodistribution properties were evaluated in mice. By intracranial and intravenous injection in the mice, we found that AAV9-Retro can retrogradely infect projection neurons with an efficiency comparable to that of AAV2-Retro and retains the characteristic of AAV9, which can be transported across the nervous system. Our strategy provides a new tool for the manipulation of neural circuits and future preclinical and clinical treatment of some neurological and neurodegenerative disorders.


2017 ◽  
Author(s):  
Ivan J. Santiago ◽  
Jing Peng ◽  
Curie Ahn ◽  
Burak Gür ◽  
Katja Sporar ◽  
...  

Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types that sequentially innervate M3 during development. Here we show that M3-specific innervation by both neurons is coordinated by Drosophila Fezf (dFezf), a conserved transcription factor that is selectively expressed by the earlier targeting input neuron. In this cell, dFezf instructs layer specificity and activates the expression of a secreted molecule (Netrin) that regulates the layer specificity of the other input neuron. We propose that employment of transcriptional modules that cell-intrinsically target neurons to specific layers, and cell-extrinsically recruit other neurons is a general mechanism for building layered networks of neural connections.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Kunzhang Lin ◽  
Xin Zhong ◽  
Lei Li ◽  
Min Ying ◽  
Tian Yang ◽  
...  

Abstract Recombinant adeno-associated viruses (rAAVs), particularly those that permit efficient gene transfer to neurons from axonal terminals or across the blood–brain barrier, are useful vehicles for structural and functional studies of the neural circuit and for the treatment of many gene-deficient brain diseases that need to compensate for the correct genes in every cell in the whole brain. However, AAVs with these two advantages have not been reported. Here, we describe a new capsid engineering method, which exploits the combination of different capsids and aims to yield a capsid that can provide more alternative routes of administration that are more suitable for the wide-scale transduction of the central nervous system (CNS). A new AAV variant, AAV9-Retro, was developed by inserting the 10-mer peptide fragment from AAV2-Retro into the capsid of AAV9, and the biodistribution properties were evaluated in mice. By intracranial and intravenous injection in the mice, we found that AAV9-Retro can retrogradely infect projection neurons with an efficiency comparable to that of AAV2-Retro and retains the characteristic of AAV9, which can be transported across the nervous system. Our strategy provides a new tool for the manipulation of neural circuits and future preclinical and clinical treatment of some neurological and neurodegenerative disorders.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008824
Author(s):  
Yevhen Tupikov ◽  
Dezhe Z. Jin

During development, neurons arrive at local brain areas in an extended period of time, but how they form local neural circuits is unknown. Here we computationally model the emergence of a network for precise timing in the premotor nucleus HVC in songbird. We show that new projection neurons, added to HVC post hatch at early stages of song development, are recruited to the end of a growing feedforward network. High spontaneous activity of the new neurons makes them the prime targets for recruitment in a self-organized process via synaptic plasticity. Once recruited, the new neurons fire readily at precise times, and they become mature. Neurons that are not recruited become silent and replaced by new immature neurons. Our model incorporates realistic HVC features such as interneurons, spatial distributions of neurons, and distributed axonal delays. The model predicts that the birth order of the projection neurons correlates with their burst timing during the song.


2017 ◽  
Author(s):  
Honglei Liu ◽  
Daniel Bridges ◽  
Connor Randall ◽  
Sara A. Solla ◽  
Bian Wu ◽  
...  

AbstractUnderstanding how neuronal signals propagate in local network is an important step in understanding information processing. As a result, spike trains recorded with Multi-electrode Arrays (MEAs) have been widely used to study behaviors of neural connections. Studying the dynamics of neuronal networks requires the identification of both excitatory and inhibitory connections. The detection of excitatory relationships can robustly be inferred by characterizing the statistical relationships of neural spike trains. However, the identification of inhibitory relationships is more difficult: distinguishing endogenous low firing rates from active inhibition is not obvious. In this paper, we propose an in silico interventional procedure that makes predictions about the effect of stimulating or inhibiting single neurons on other neurons, and thereby gives the ability to accurately identify inhibitory causal relationships. To experimentally test these predictions, we have developed a Neural Circuit Probe (NCP) that delivers drugs transiently and reversibly on individually identified neurons to assess their contributions to the neural circuit behavior. With the help of NCP, three inhibitory connections identified by our in silico modeling were validated through real interventional experiments. Together, these methods provide a basis for mapping complete neural circuits.


2020 ◽  
Author(s):  
Yevhen Tupikov ◽  
Dezhe Z. Jin

AbstractDuring development, neurons arrive at local brain areas in extended period of time, but how they form local neural circuits is unknown. Here we computationally model the emergence of a network for precise timing in the premotor nucleus HVC in songbird. We show that new motor projection neurons, mostly added to HVC before and during song learning, are recruited to the end of a growing feedforward network. High spontaneous activity of new neurons makes them the prime targets for recruitment in a self-organized process via synaptic plasticity. Once recruited, the new neurons fire readily at precise times, and they become mature. Neurons that are not recruited become silent and replaced by new immature neurons. Our model incorporates realistic HVC features such as interneurons, spatial distributions of neurons, and distributed axonal delays. The model predicts that the birth order of the projection neurons correlates with their burst timing during the song.Significance StatementFunctions of local neural circuits depend on their specific network structures, but how the networks are wired is unknown. We show that such structures can emerge during development through a self-organized process, during which the network is wired by neuron-by-neuron recruitment. This growth is facilitated by steady supply of immature neurons, which are highly excitable and plastic. We suggest that neuron maturation dynamics is an integral part of constructing local neural circuits.


2016 ◽  
Author(s):  
Lev E. Givon ◽  
Aurel A. Lazar

AbstractThe central complex (CX) is a set of neuropils in the center of the fly brain that have been implicated as playing an important role in vision-mediated behavior and integration of spatial information for locomotor control. In contrast to currently available data regarding the neural circuitry of neuropils in the fly's vision and olfactory systems, comparable data for the CX neuropils is relatively incomplete; many categories of neurons remain only partly characterized, and the synaptic connectivity between CX neurons has yet to be experimentally determined. Successful modeling of the information processing functions of the CX neuropils therefore requires a means of easily constructing and testing a range of hypotheses regarding both the high-level structure of their neural circuitry and the properties of their constituent neurons and synapses. This document demonstrates how NeuroArch and Neurokernel may be used to algorithmically construct and evaluate executable neural circuit models of the CX neuropils and their interconnects based upon currently available information regarding the geometry and polarity of the arborizations of identified local and projection neurons in the CX.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jing Peng ◽  
Ivan J Santiago ◽  
Curie Ahn ◽  
Burak Gur ◽  
C Kimberly Tsui ◽  
...  

Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types that sequentially innervate M3 during development. Here we show that M3-specific innervation by both neurons is coordinated by Drosophila Fezf (dFezf), a conserved transcription factor that is selectively expressed by the earlier targeting input neuron. In this cell, dFezf instructs layer specificity and activates the expression of a secreted molecule (Netrin) that regulates the layer specificity of the other input neuron. We propose that employment of transcriptional modules that cell-intrinsically target neurons to specific layers, and cell-extrinsically recruit other neurons is a general mechanism for building layered networks of neural connections.


Sign in / Sign up

Export Citation Format

Share Document