scholarly journals A high-resolution comparative atlas across 74 fish genomes illuminates teleost evolution after whole-genome duplication

2022 ◽  
Author(s):  
Elise Parey ◽  
Alexandra Louis ◽  
Jerome Monfort ◽  
Yann Guiguen ◽  
Hugues Roest Crollius ◽  
...  

Teleost fish are one of the most species-rich and diverse clades amongst vertebrates, which makes them an outstanding model group for evolutionary, ecological and functional genomics. Yet, despite a growing number of sequence reference genomes, large-scale comparative analysis remains challenging in teleosts due to the specifics of their genomic organization. As legacy of a whole genome duplication dated 320 million years ago, a large fraction of teleost genomes remain in duplicate paralogous copies. This ancestral polyploidy confounds the detailed identification of orthologous genomic regions across teleost species. Here, we combine tailored gene phylogeny methodology together with the state-of-the art ancestral karyotype reconstruction to establish the first high resolution comparative atlas of paleopolyploid regions across 74 teleost fish genomes. We show that this atlas represents a unique, robust and reliable resource for fish genomics. We then use the comparative atlas to study the tetraploidization and rediploidization mechanisms that affected the ancestor of teleosts. Although the polyploid history of teleost genomes appears complex, we uncover that meiotic recombination persisted between duplicated chromosomes for over 60 million years after polyploidization, suggesting that the teleost ancestor was an autotetraploid.

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1249-1257
Author(s):  
Ilya Ruvinsky ◽  
Lee M Silver ◽  
Jeremy J Gibson-Brown

Abstract The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.


Author(s):  
Param Priya Singh ◽  
Hervé Isambert

Abstract All vertebrates including human have evolved from an ancestor that underwent two rounds of whole genome duplication (2R-WGD). In addition, teleost fish underwent an additional third round of genome duplication (3R-WGD). The genes retained from these genome duplications, so-called ohnologs, have been instrumental in the evolution of vertebrate complexity, development and susceptibility to genetic diseases. However, the identification of vertebrate ohnologs has been challenging, due to lineage specific genome rearrangements since 2R- and 3R-WGD. We previously identified vertebrate ohnologs using a novel synteny comparison across multiple genomes. Here, we refine and apply this approach on 27 vertebrate genomes to identify ohnologs from both 2R- and 3R-WGD, while taking into account the phylogenetically biased sampling of available species. We assemble vertebrate ohnolog pairs and families in an expanded OHNOLOGS v2 database. We find that teleost fish have retained more 2R-WGD ohnologs than mammals and sauropsids, and that these 2R-ohnologs have retained significantly more ohnologs from the subsequent 3R-WGD than genes without 2R-ohnologs. Interestingly, species with fewer extant genes, such as sauropsids, have retained similar or higher proportions of ohnologs. OHNOLOGS v2 should allow deeper evolutionary genomic analysis of the impact of WGD on vertebrates and can be freely accessed at http://ohnologs.curie.fr.


2017 ◽  
Author(s):  
Matthew Parks ◽  
Teofil Nakov ◽  
Elizabeth Ruck ◽  
Norman J. Wickett ◽  
Andrew J. Alverson

ABSTRACTPremise of the studyDiatoms are one of the most species-rich lineages of microbial eukaryotes. Similarities in clade age, species richness, and contributions to primary production motivate comparisons to flowering plants, whose genomes have been inordinately shaped by whole genome duplication (WGD). These events that have been linked to speciation and increased rates of lineage diversification, identifying WGDs as a principal driver of angiosperm evolution. We synthesized a relatively large but scattered body of evidence that, taken together, suggests that polyploidy may be common in diatoms.MethodsWe used data from gene counts, gene trees, and patterns of synonymous divergence to carry out the first large-scale phylogenomic analysis of genome-scale duplication histories for a phylogenetically diverse set of 37 diatom taxa.Key resultsSeveral methods identified WGD events of varying age across diatoms, though determining the exact number and placement of events and, more broadly, inferences of WGD at all, were greatly impacted by gene-tree uncertainty. Gene-tree reconciliations supported allopolyploidy as the predominant mode of polyploid formation, with particularly strong evidence for ancient allopolyploid events in the thalassiosiroid and pennate diatom clades.ConclusionsWhole genome duplication appears to have been an important driver of genome evolution in diatoms. Denser taxon sampling will better pinpoint the timing of WGDs and likely reveal many more of them. We outline potential challenges in reconstructing paleopolyploid events in diatoms that, together with these results, offer a framework for understanding the evolutionary roles of genome duplication in a group that likely harbors substantial genomic diversity.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3400 ◽  
Author(s):  
Yunpeng Cao ◽  
Yahui Han ◽  
Dandan Meng ◽  
Dahui Li ◽  
Qing Jin ◽  
...  

The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) proteins are a type of nuclear-localized protein with DNA-binding activity in plants. Although the EIN3/EIL gene family has been studied in several plant species, little is known about comprehensive study of the EIN3/EIL gene family in Rosaceae. In this study, ten, five, four, and five EIN3/EIL genes were identified in the genomes of pear (Pyrus bretschneideri), mei (Prunus mume), peach (Prunus persica) and strawberry (Fragaria vesca), respectively. Twenty-eight chromosomal segments of EIL/EIN3 gene family were found in four Rosaceae species, and these segments could form seven orthologous or paralogous groups based on interspecies or intraspecies gene colinearity (microsynteny) analysis. Moreover, the highly conserved regions of microsynteny were found in four Rosaceae species. Subsequently it was found that both whole genome duplication and tandem duplication events significantly contributed to the EIL/EIN3 gene family expansion. Gene expression analysis of the EIL/EIN3 genes in the pear revealed subfunctionalization for several PbEIL genes derived from whole genome duplication. It is noteworthy that according to environmental selection pressure analysis, the strong purifying selection should dominate the maintenance of the EIL/EIN3 gene family in four Rosaceae species. These results provided useful information on Rosaceae EIL/EIN3 genes, as well as insights into the evolution of this gene family in four Rosaceae species. Furthermore, high level of microsynteny in the four Rosaceae plants suggested that a large-scale genome duplication event in the EIL/EIN3 gene family was predated to speciation.


2012 ◽  
Vol 30 (1) ◽  
pp. 140-153 ◽  
Author(s):  
Juan C. Opazo ◽  
G. Tyler Butts ◽  
Mariana F. Nery ◽  
Jay F. Storz ◽  
Federico G. Hoffmann

GigaScience ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Zheng Fan ◽  
Tao Yuan ◽  
Piao Liu ◽  
Lu-Yu Wang ◽  
Jian-Feng Jin ◽  
...  

Abstract Background The spider Trichonephila antipodiana (Araneidae), commonly known as the batik golden web spider, preys on arthropods with body sizes ranging from ∼2 mm in length to insects larger than itself (>20‒50 mm), indicating its polyphagy and strong dietary detoxification abilities. Although it has been reported that an ancient whole-genome duplication event occurred in spiders, lack of a high-quality genome has limited characterization of this event. Results We present a chromosome-level T. antipodiana genome constructed on the basis of PacBio and Hi-C sequencing. The assembled genome is 2.29 Gb in size with a scaffold N50 of 172.89 Mb. Hi-C scaffolding assigned 98.5% of the bases to 13 pseudo-chromosomes, and BUSCO completeness analysis revealed that the assembly included 94.8% of the complete arthropod universal single-copy orthologs (n = 1,066). Repetitive elements account for 59.21% of the genome. We predicted 19,001 protein-coding genes, of which 96.78% were supported by transcriptome-based evidence and 96.32% matched protein records in the UniProt database. The genome also shows substantial expansions in several detoxification-associated gene families, including cytochrome P450 mono-oxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters, reflecting the possible genomic basis of polyphagy. Further analysis of the T. antipodiana genome architecture reveals an ancient whole-genome duplication event, based on 2 lines of evidence: (i) large-scale duplications from inter-chromosome synteny analysis and (ii) duplicated clusters of Hox genes. Conclusions The high-quality T. antipodiana genome represents a valuable resource for spider research and provides insights into this species’ adaptation to the environment.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0180936 ◽  
Author(s):  
Emilien Voldoire ◽  
Frédéric Brunet ◽  
Magali Naville ◽  
Jean-Nicolas Volff ◽  
Delphine Galiana

2020 ◽  
Author(s):  
Kenta Shirasawa ◽  
Akihiro Itai ◽  
Sachiko Isobe

AbstractAimThe Japanese pear (P. pyrifolia) variety ‘Nijisseiki’ is valued for its superior flesh texture, which has led to its use as a breeding parent for most Japanese pear cultivars. However, in the absence of genomic resources for Japanese pear, the parents of the ‘Nijisseiki’ cultivar remain unknown, as does the genetic basis of its favorable texture. The genomes of pear and related species are complex due to ancestral whole genome duplication and high heterozygosity, and long-sequencing technology was used to address this.Methods and ResultsDe novo assembly of long sequence reads covered 136× of the Japanese pear genome and generated 503.9 Mb contigs consisting of 114 sequences with an N50 value of 7.6□Mb. Contigs were assigned to Japanese pear genetic maps to establish 17 chromosome-scale sequences. In total, 44,876 protein-encoding genes were predicted, 84.3% of which were supported by predicted genes and transcriptome data from Japanese pear relatives. As expected, evidence of whole genome duplication was observed, consistent with related species.Conclusion and PerspectiveThis is the first genome sequence analysis reported for Japanese pear, and this resource will support breeding programs and provide new insights into the physiology and evolutionary history of Japanese pear.


Sign in / Sign up

Export Citation Format

Share Document