scholarly journals cGAS recruitment to micronuclei is dictated by pre-existing nuclear chromatin status.

2022 ◽  
Author(s):  
Kate M MacDonald ◽  
Shirony Nicholson-Puthenveedu ◽  
Maha M Tageldein ◽  
Cheryl Arrowsmith ◽  
Shane M Harding

Micronuclei (MN) are aberrant cytosolic compartments containing broken genomic fragments or whole lagging chromosomes. MN envelopes irreversibly rupture, allowing the viral receptor cGAS to localize to MN and initiate an inflammatory signalling cascade. Here, we demonstrate that MN envelope rupture is not sufficient for cGAS localization. Unlike MN that arise following ionizing radiation (IR), ruptured MN generated from acute transcription stressors DRB or siSRSF1 are refractory to cGAS localization. Recruitment of cGAS to MN is blocked by inhibiting the histone methyltransferase DOT1L prior to IR exposure, demonstrating that cGAS recruitment to MN is dictated by nuclear chromatin organization at the time of DNA damage. Loss of cGAS+ MN, caused either by acute transcription stressors or by preventing DOT1L-deposited histone methylation, corresponded to significantly decreased cGAS-dependent inflammatory signalling. These results implicate nuclear chromatin organization in micronuclear composition and activity, influencing the ability of damage-induced MN to retain cytosolic proteins upon rupture.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takuma Nakatsuka ◽  
Keisuke Tateishi ◽  
Hiroyuki Kato ◽  
Hiroaki Fujiwara ◽  
Keisuke Yamamoto ◽  
...  

AbstractWhile the significance of acquired genetic abnormalities in the initiation of hepatocellular carcinoma (HCC) has been established, the role of epigenetic modification remains unknown. Here we identified the pivotal role of histone methyltransferase G9a in the DNA damage-triggered initiation of HCC. Using liver-specific G9a-deficient (G9aΔHep) mice, we revealed that loss of G9a significantly attenuated liver tumor initiation caused by diethylnitrosamine (DEN). In addition, pharmacological inhibition of G9a attenuated the DEN-induced initiation of HCC. After treatment with DEN, while the induction of γH2AX and p53 were comparable in the G9aΔHep and wild-type livers, more apoptotic hepatocytes were detected in the G9aΔHep liver. Transcriptome analysis identified Bcl-G, a pro-apoptotic Bcl-2 family member, to be markedly upregulated in the G9aΔHep liver. In human cultured hepatoma cells, a G9a inhibitor, UNC0638, upregulated BCL-G expression and enhanced the apoptotic response after treatment with hydrogen peroxide or irradiation, suggesting an essential role of the G9a-Bcl-G axis in DNA damage response in hepatocytes. The proposed mechanism was that DNA damage stimuli recruited G9a to the p53-responsive element of the Bcl-G gene, resulting in the impaired enrichment of p53 to the region and the attenuation of Bcl-G expression. G9a deletion allowed the recruitment of p53 and upregulated Bcl-G expression. These results demonstrate that G9a allows DNA-damaged hepatocytes to escape p53-induced apoptosis by silencing Bcl-G, which may contribute to the tumor initiation. Therefore, G9a inhibition can be a novel preventive strategy for HCC.


2021 ◽  
Vol 22 (14) ◽  
pp. 7638
Author(s):  
Yvonne Lorat ◽  
Judith Reindl ◽  
Anna Isermann ◽  
Christian Rübe ◽  
Anna A. Friedl ◽  
...  

Background: Charged-particle radiotherapy is an emerging treatment modality for radioresistant tumors. The enhanced effectiveness of high-energy particles (such as heavy ions) has been related to the spatial clustering of DNA lesions due to highly localized energy deposition. Here, DNA damage patterns induced by single and multiple carbon ions were analyzed in the nuclear chromatin environment by different high-resolution microscopy approaches. Material and Methods: Using the heavy-ion microbeam SNAKE, fibroblast monolayers were irradiated with defined numbers of carbon ions (1/10/100 ions per pulse, ipp) focused to micrometer-sized stripes or spots. Radiation-induced lesions were visualized as DNA damage foci (γH2AX, 53BP1) by conventional fluorescence and stimulated emission depletion (STED) microscopy. At micro- and nanoscale level, DNA double-strand breaks (DSBs) were visualized within their chromatin context by labeling the Ku heterodimer. Single and clustered pKu70-labeled DSBs were quantified in euchromatic and heterochromatic regions at 0.1 h, 5 h and 24 h post-IR by transmission electron microscopy (TEM). Results: Increasing numbers of carbon ions per beam spot enhanced spatial clustering of DNA lesions and increased damage complexity with two or more DSBs in close proximity. This effect was detectable in euchromatin, but was much more pronounced in heterochromatin. Analyzing the dynamics of damage processing, our findings indicate that euchromatic DSBs were processed efficiently and repaired in a timely manner. In heterochromatin, by contrast, the number of clustered DSBs continuously increased further over the first hours following IR exposure, indicating the challenging task for the cell to process highly clustered DSBs appropriately. Conclusion: Increasing numbers of carbon ions applied to sub-nuclear chromatin regions enhanced the spatial clustering of DSBs and increased damage complexity, this being more pronounced in heterochromatic regions. Inefficient processing of clustered DSBs may explain the enhanced therapeutic efficacy of particle-based radiotherapy in cancer treatment.


2019 ◽  
Vol 20 (23) ◽  
pp. 6026
Author(s):  
Hwani Ryu ◽  
Hyo Jeong Kim ◽  
Jie-Young Song ◽  
Sang-Gu Hwang ◽  
Jae-Sung Kim ◽  
...  

We previously reported on a poly (ADP-ribose) polymerase (PARP) 1/2 inhibitor N-(3-(hydroxycarbamoyl)phenyl)carboxamide (designated KJ-28d), which increased the death of human ovarian cancer BRCA1-deficient SNU-251 cells. In the present study, we further investigated the antitumor activities of KJ-28d in BRCA-proficient non-small cell lung cancer (NSCLC) cells to expand the use of PARP inhibitors. KJ-28d significantly inhibited the growth of NSCLC cells in vitro and in vivo, and induced DNA damage and reactive oxygen species in A549 and H1299 cells. Combined treatment with KJ-28d and ionizing radiation led to increased DNA damage responses in A549 and H1299 cells compared to KJ-28d or ionizing radiation alone, resulting in apoptotic cell death. Moreover, the combination of KJ-28d plus a DNA-damaging therapeutic agent (carboplatin, cisplatin, paclitaxel, or doxorubicin) synergistically inhibited cell proliferation, compared to either drug alone. Taken together, the findings demonstrate the potential of KJ-28d as an effective anti-cancer therapeutic agent for BRCA-deficient and -proficient cancer cells. KJ-28d might have potential as an adjuvant when used in combination with radiotherapy or DNA-damaging agents, pending further investigations.


2013 ◽  
Vol 90 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Kwang Seok Kim ◽  
Jung Eun Kim ◽  
Kyu Jin Choi ◽  
Sangwoo Bae ◽  
Dong Ho Kim

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2068
Author(s):  
Andra S. Martinikova ◽  
Monika Burocziova ◽  
Miroslav Stoyanov ◽  
Libor Macurek

Genome integrity is protected by the cell-cycle checkpoints that prevent cell proliferation in the presence of DNA damage and allow time for DNA repair. The transient checkpoint arrest together with cellular senescence represent an intrinsic barrier to tumorigenesis. Tumor suppressor p53 is an integral part of the checkpoints and its inactivating mutations promote cancer growth. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of p53. Although its loss impairs recovery from the G2 checkpoint and promotes induction of senescence, amplification of the PPM1D locus or gain-of-function truncating mutations of PPM1D occur in various cancers. Here we used a transgenic mouse model carrying a truncating mutation in exon 6 of PPM1D (Ppm1dT). As with human cell lines, we found that the truncated PPM1D was present at high levels in the mouse thymus. Truncated PPM1D did not affect differentiation of T-cells in the thymus but it impaired their response to ionizing radiation (IR). Thymocytes in Ppm1dT/+ mice did not arrest in the checkpoint and continued to proliferate despite the presence of DNA damage. In addition, we observed a decreased level of apoptosis in the thymi of Ppm1dT/+ mice. Moreover, the frequency of the IR-induced T-cell lymphomas increased in Ppm1dT/+Trp53+/− mice resulting in decreased survival. We conclude that truncated PPM1D partially suppresses the p53 pathway in the mouse thymus and potentiates tumor formation under the condition of a partial loss of p53 function.


Sign in / Sign up

Export Citation Format

Share Document