scholarly journals Local-scale virome depiction supports significant differences between Aedes aegypti and Aedes albopictus

2022 ◽  
Author(s):  
Arley Calle-Tobón ◽  
Juliana Pérez-Pérez ◽  
Nicolás Forero-Pineda ◽  
Omar Triana Chávez ◽  
Winston Rojas-Montoya ◽  
...  

Aedes spp. comprise the primary group of mosquitoes that transmit arboviruses such as dengue, Zika, and chikungunya viruses to humans, and thus these insects pose a significant burden on public health worldwide. Advancements in next-generation sequencing and metagenomics have expanded our knowledge on the richness of RNA viruses harbored by arthropods such as Ae. aegypti and Ae. albopictus ; increasing evidence suggests that vectorial competence can be modified by the microbiome (comprising both bacteriome and virome) of mosquitoes present in endemic zones. Using an RNA-seq-based metataxonomic approach, this study determined the virome structure of field-caught Ae. aegypti and Ae. albopictus mosquitoes in Medellín, Colombia, a municipality with a high incidence of mosquito-transmitted arboviruses. The two species are sympatric, but their core viromes differed considerably in richness, diversity, and abundance; the viromes were dominated by a few viruses. BLAST searches of assembled contigs suggested that at least 17 virus species (16 of which are insect-specific viruses [ISVs]) infect the Ae. aegypti population. Dengue virus 3 was detected in one sample. In Ae. albopictus , up to 11 ISVs and one plant virus were detected. Therefore, the virome composition was species-specific. The bacterial endosymbiont Wolbachia was identified in all Ae. albopictus samples and in some Ae. aegypti samples collected after 2017. The presence of Wolbachi a sp. in Ae. aegypti was not related to significant changes in the richness, diversity, or abundance of this mosquito’s virome, although it was related to an increase in the abundance of Aedes aegypti To virus 2 (unclassified). The mitochondrial diversity of these mosquitoes suggested that the Ae. aegypti population underwent a change that started in the second half of 2017, which coincides with the release of Wolbachia -infected mosquitoes in Medellín, indicating that the population of w Mel-infected mosquitoes has expanded. However, additional studies are required on the dispersal speed and intergenerational stability of w Mel in Medellín and nearby areas as well as on the introgression of genetic variants in the native mosquito population.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1423
Author(s):  
André Albuquerque ◽  
Cristina Óvilo ◽  
Yolanda Núñez ◽  
Rita Benítez ◽  
Adrián López-Garcia ◽  
...  

Gene expression is one of the main factors to influence meat quality by modulating fatty acid metabolism, composition, and deposition rates in muscle tissue. This study aimed to explore the transcriptomics of the Longissimus lumborum muscle in two local pig breeds with distinct genetic background using next-generation sequencing technology and Real-Time qPCR. RNA-seq yielded 49 differentially expressed genes between breeds, 34 overexpressed in the Alentejano (AL) and 15 in the Bísaro (BI) breed. Specific slow type myosin heavy chain components were associated with AL (MYH7) and BI (MYH3) pigs, while an overexpression of MAP3K14 in AL may be associated with their lower loin proportion, induced insulin resistance, and increased inflammatory response via NFkB activation. Overexpression of RUFY1 in AL pigs may explain the higher intramuscular (IMF) content via higher GLUT4 recruitment and consequently higher glucose uptake that can be stored as fat. Several candidate genes for lipid metabolism, excluded in the RNA-seq analysis due to low counts, such as ACLY, ADIPOQ, ELOVL6, LEP and ME1 were identified by qPCR as main gene factors defining the processes that influence meat composition and quality. These results agree with the fatter profile of the AL pig breed and adiponectin resistance can be postulated as responsible for the overexpression of MAP3K14′s coding product NIK, failing to restore insulin sensitivity.


Author(s):  
Gangjun Zhao ◽  
Caixia Luo ◽  
Jianning Luo ◽  
Junxing Li ◽  
Hao Gong ◽  
...  

Abstract Key message A dwarfism gene LacDWARF1 was mapped by combined BSA-Seq and comparative genomics analyses to a 65.4 kb physical genomic region on chromosome 05. Abstract Dwarf architecture is one of the most important traits utilized in Cucurbitaceae breeding because it saves labor and increases the harvest index. To our knowledge, there has been no prior research about dwarfism in the sponge gourd. This study reports the first dwarf mutant WJ209 with a decrease in cell size and internodes. A genetic analysis revealed that the mutant phenotype was controlled by a single recessive gene, which is designated Lacdwarf1 (Lacd1). Combined with bulked segregate analysis and next-generation sequencing, we quickly mapped a 65.4 kb region on chromosome 5 using F2 segregation population with InDel and SNP polymorphism markers. Gene annotation revealed that Lac05g019500 encodes a gibberellin 3β-hydroxylase (GA3ox) that functions as the most likely candidate gene for Lacd1. DNA sequence analysis showed that there is an approximately 4 kb insertion in the first intron of Lac05g019500 in WJ209. Lac05g019500 is transcribed incorrectly in the dwarf mutant owing to the presence of the insertion. Moreover, the bioactive GAs decreased significantly in WJ209, and the dwarf phenotype could be restored by exogenous GA3 treatment, indicating that WJ209 is a GA-deficient mutant. All these results support the conclusion that Lac05g019500 is the Lacd1 gene. In addition, RNA-Seq revealed that many genes, including those related to plant hormones, cellular process, cell wall, membrane and response to stress, were significantly altered in WJ209 compared with the wild type. This study will aid in the use of molecular marker-assisted breeding in the dwarf sponge gourd.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1358
Author(s):  
Brigitte Sigrist ◽  
Jessica Geers ◽  
Sarah Albini ◽  
Dennis Rubbenstroth ◽  
Nina Wolfrum

Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.


Author(s):  
Genevieve A M Lumsden ◽  
Evgeny V Zakharov ◽  
Sarah Dolynskyj ◽  
J Scott Weese ◽  
L Robbin Lindsay ◽  
...  

Abstract Using next-generation sequencing DNA barcoding, we aimed to determine: 1) if the larval bloodmeal can be detected in Ixodes scapularis nymphs and 2) the post-moult temporal window for detection of the larval bloodmeal. Subsets of 30 nymphs fed on a domestic rabbit (Oryctolagus cuniculus Linnaeus, Lagomorphia: Leporidae) as larvae were reared and frozen at 11 time points post-moult, up to 150 d. Vertebrate DNA was amplified using novel universal (UP) and species-specific primers (SSP) and sequenced for comparison against cytochrome c oxidase subunit I barcodes to infer host identification. Detectable bloodmeals decreased as time since moult increased for both assays. For the SSP assay, detection of bloodmeals decreased from 96.7% (n = 29/30) in day 0 nymphs to 3.3% (n = 1/30) and 6.7% (n = 2/30) at 4- and 5-mo post-moult, respectively. A shorter temporal detection period was achieved with the UP assay, declining from 16.7% (n = 5/30) in day 0 nymphs to 0/30 in 3-d-old nymphs. Bloodmeal detection was nonexistent for the remaining cohorts, with the exception of 1/30 nymphs at 2-mo post-moult. Host detection was significantly more likely using the SSP assay compared to the UP assay in the first three time cohorts (day 0: χ 2 = 39.1, P < 0.005; day 2: χ 2 = 19.2, P < 0.005; day 3: χ 2 = 23.3, P < 0.005). Regardless of the primer set used, the next-generation sequencing DNA barcoding assay was able to detect host DNA from a larval bloodmeal in the nymphal life stage; however, a short window with a high proportion of detection post-moult was achieved.


2014 ◽  
Vol 32 (11) ◽  
pp. 1166-1166 ◽  
Author(s):  
Sheng Li ◽  
Scott W Tighe ◽  
Charles M Nicolet ◽  
Deborah Grove ◽  
Shawn Levy ◽  
...  

2021 ◽  
Author(s):  
Lei Luo ◽  
Yan Shi ◽  
Huanan Wang ◽  
Zizengchen Wang ◽  
Yanna Dang ◽  
...  

The emergence of the first three lineages during development are orchestrated by a network of transcription factors, which are best characterized in mice. However, the role and regulation of these factors are not completely conserved in other mammals, including human and cattle. Here, we establish a gene inactivation system by introducing premature codon with cytosine base editor in bovine embryos with a robust efficiency. Of interest, SOX2 is universally localized in early blastocysts but gradually restricted into the inner cell mass in cattle. SOX2 knockout results in a failure of the establishment of pluripotency. Indeed, OCT4 level is significantly reduced and NANOG was barely detectable. Furthermore, the formation of primitive endoderm is compromised with few SOX17 positive cells. Single embryo RNA-seq reveals a dysregulation of 2074 genes, among which 90% are up-regulated in SOX2-null blastocysts. Intriguingly, more than a dozen lineage-specific genes, including OCT4 and NANOG, are down-regulated. Moreover, SOX2 expression is sustained in the trophectoderm in absence of CDX2 in bovine late blastocysts. Overall, we propose that SOX2 is dispensable for OCT4 and NANOG expression and disappearance of SOX2 in the trophectoderm depends on CDX2 in cattle, which are all in sharp contrast with results in mice.


2019 ◽  
Author(s):  
Kate D. Meyer

Abstract m6A is the most abundant internal mRNA modification and plays diverse roles in gene expression regulation. Much of our current knowledge about m6A has been driven by recent advances in the ability to detect this mark transcriptome-wide. Antibody-based approaches have been the method of choice for global m6A mapping studies. These methods rely on m6A antibodies to immunoprecipitate methylated RNAs, followed by next-generation sequencing to identify m6A-containing transcripts1,2. While these methods enabled the first identification of m6A sites transcriptome-wide and have dramatically improved our ability to study m6A, they suffer from several limitations. These include requirements for high amounts of input RNA, costly and time-consuming library preparation, high variability across studies, and m6A antibody cross-reactivity with other modifications. Here, we describe DART-Seq (deamination adjacent to RNA modification targets), an antibody-free method for global m6A detection. In DART-Seq, the C to U deaminating enzyme, APOBEC1, is fused to the m6A-binding YTH domain. This fusion protein is then introduced to cellular RNA either through overexpression in cells or with in vitro assays, and subsequent deamination of m6A-adjacent cytidines is then detected by RNA sequencing to identify m6A sites. DART-Seq can successfully map m6A sites throughout the transcriptome using as little as 10 nanograms of total cellular RNA, and it is compatible with any standard RNA-seq library preparation method.


Sign in / Sign up

Export Citation Format

Share Document