scholarly journals Interactive effect matters: a combination of herbivory degree and the ratio of generalist to specialist better predicts evolution of plant defense

2022 ◽  
Author(s):  
Yuanfei Pan ◽  
Xiaoyun Pan ◽  
Lucas Del Bianco Faria ◽  
Bo Li

Herbivory degree and the ratio of generalist to specialist herbivores have long been treated as two important but independent factors in shaping the evolution of plant defense. However, this assumption of independency is poorly supported and has resulted in great controversy in explaining the patterns of plant defense. Here we investigated the possible interaction between herbivory degree and generalist-to-specialist ratio using a cost-benefit model of defense evolution in plants. Our results showed that, with increasing generalist herbivore proportion, plant defense investment increases when herbivory degree is low and decreases when herbivory degree is high. These results provide the first theoretical support for the interactive effect of herbivory degree and ratio of generalist/specialist affecting plant defense, which integrate many of the previous results (e.g. latitudinal patterns of plant defense and defense evolution of invasive plants) and put them into a more general theoretical context.

2021 ◽  
Vol 22 (23) ◽  
pp. 13005
Author(s):  
Tuo Zeng ◽  
Jia-Wen Li ◽  
Li Zhou ◽  
Zhi-Zhuo Xu ◽  
Jin-Jin Li ◽  
...  

Natural pyrethrins have been widely used as natural pesticides due to their low mammalian toxicity and environmental friendliness. Previous studies have mainly focused on Tanacetum cinerariifolium, which contains high levels of pyrethrins and volatile terpenes that play significant roles in plant defense and pollination. However, there is little information on T. coccineum due to its lower pyrethrin content and low commercial value. In this study, we measured the transcriptome and metabolites of the leaves (L), flower buds (S1), and fully blossomed flowers (S4) of T. coccineum. The results show that the expression of pyrethrins and precursor terpene backbone genes was low in the leaves, and then rapidly increased in the S1 stage before decreasing again in the S4 stage. The results also show that pyrethrins primarily accumulated at the S4 stage. However, the content of volatile terpenes was consistently low. This perhaps suggests that, despite T. coccineum and T. cinerariifolium having similar gene expression patterns and accumulation of pyrethrins, T. coccineum attracts pollinators via its large and colorful flowers rather than via inefficient and metabolically expensive volatile terpenes, as in T. cinerariifolium. This is the first instance of de novo transcriptome sequencing reported for T. coccineum. The present results could provide insights into pyrethrin biosynthetic pathways and will be helpful for further understanding how plants balance the cost–benefit relationship between plant defense and pollination.


2014 ◽  
Vol 7 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Christine S. Sheppard ◽  
Margaret C. Stanley

AbstractClimate change, comprising an increase in carbon dioxide levels coupled with elevated temperature, may favor invasive plants, as they possess traits that will facilitate adaptation to a new climate. In particular, alien plants of subtropical origin introduced to a colder region are expected to increase the number and size of their populations and spread farther with climate change. Seedlings of three such woody alien species in New Zealand (Archontophoenix cunninghamiana, Psidium guajava, and Schefflera actinophylla) were grown in environmental chambers under the combination of two temperature (23.7 and 26 C [74.7 and 78.8 F]) and two CO2 (450 and 900 ppmv) regimes, simulating current conditions and conditions projected for the end of the century. Total biomass of S. actinophylla was 45% higher and total leaf area 35% larger under doubled CO2 compared to current CO2. Root : shoot ratio was higher under doubled CO2 across all species, and the number of branches was increased for P. guajava. The only significant interactive effect of elevated temperature and doubled CO2 was for relative growth rate of the height of S. actinophylla seedlings. This study provides strong evidence of more vigorous growth of S. actinophylla under future conditions, particularly increased CO2, whereas the other two species appear likely to maintain current growth rates. Better knowledge of the types of future conditions that may benefit such species, together with results of species distribution models and competition and eco-physiology studies will ensure robust weed risk assessments.


2016 ◽  
Author(s):  
Dandan Cheng ◽  
Viet-Thang Nguyen ◽  
Noel Ndihokubwayo

Pyrrolizidine alkaloids (PAs), a typical kind of secondary metabolites in plants, have important roles on defense against herbivores and pathogens; however, specialist herbivores adapted to PAs can use them as cues for oviposition and feeding. Thus, in the native ranges, PA diversity and concentration in plants were selected by the balance between pressure from generalist and specialist herbivores. In introduced ranges, where the specialist herbivores are absent, the introduced plants could increase concentration and diversity of PAs. This predication is deduced from the Shift Defense Hypothesis (SDH). In this research, we investigated whether there were any differences between native and invasive Senecio vulgaris plants (from Europe and China, respectively) with regards to the PA composition and concentration. We grew the native and invasive S. vulgaris plants in an identical condition and harvested them when they started to bloom. Their roots and shoots were separately harvested and dried. PA composition and concentration from powder of the shoots and roots were detected by using liquid chromatography – tanderm mass spectrometry (LC-MS/MS). We identified 14 PAs which belongs to the structural group senecionine – like PAs. Most of them occurred in both the native and invasive S. vulgaris plants, except the usaramine N – oxide that was only found in the native ones. From the 14 PAs identified, only riddelliine N – oxide had significantly higher present frequency in the invasive plants than in the native plants. The invasive S. vulgaris plants had significantly lower concentration of 3 individual PAs (seneciphylline N – oxide, spartioidine and spartioidine N – oxide) than the native ones. These results demonstrated that PA diversity and concentration of some individual PAs tended to reduce in the invasive range of S. vulgaris. This is contrary to the predictions of the SDH that the invasive plants would produce more qualitative defense than the native ones, and it is probably an evidence that a little trade – off between defense and growth happened to the S. vulgaris in China.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2067 ◽  
Author(s):  
Mubasher Hussain ◽  
Biswojit Debnath ◽  
Muhammad Qasim ◽  
Bamisope Steve Bamisile ◽  
Waqar Islam ◽  
...  

The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae) is a very destructive crucifer-specialized pest that has resulted in significant crop losses worldwide. DBM is well attracted to glucosinolates (which act as fingerprints and essential for herbivores in host plant recognition) containing crucifers such as wintercress, Barbarea vulgaris (Brassicaceae) despite poor larval survival on it due to high-to-low concentration of saponins and generally to other plants in the genus Barbarea. B. vulgaris build up resistance against DBM and other herbivorous insects using glucosinulates which are used in plant defense. Aside glucosinolates, Barbarea genus also contains triterpenoid saponins, which are toxic to insects and act as feeding deterrents for plant specialist herbivores (such as DBM). Previous studies have found interesting relationship between the host plant and secondary metabolite contents, which indicate that attraction or resistance to specialist herbivore DBM, is due to higher concentrations of glucosinolates and saponins in younger leaves in contrast to the older leaves of Barbarea genus. As a response to this phenomenon, herbivores as DBM has developed a strategy of defense against these plant biochemicals. Because there is a lack of full knowledge in understanding bioactive molecules (such as saponins) role in plant defense against plant herbivores. Thus, in this review, we discuss the role of secondary plant metabolites in plant defense mechanisms against the specialist herbivores. In the future, trials by plant breeders could aim at transferring these bioactive molecules against herbivore to cash crops.


2014 ◽  
Vol 202 (2) ◽  
pp. 628-639 ◽  
Author(s):  
Ardeshir Kazemi-Dinan ◽  
Sina Thomaschky ◽  
Ricardo J. Stein ◽  
Ute Krämer ◽  
Caroline Müller

2015 ◽  
Vol 3 (2) ◽  
pp. 131-147 ◽  
Author(s):  
Matteo Antonini ◽  
Michael A. Hogg ◽  
Lucia Mannetti ◽  
Barbara Barbieri ◽  
Joseph A. Wagoner

Under what conditions do citizens of nations and states comply with governmental requests to participate in public policymaking? Drawing on the dual pathway model of collective action (Stürmer & Simon, 2004) but with a focus on compliance with the status quo, rather than participation in collective protest, two studies examined citizens’ motivation to participate in public policymaking. Study 1 (N = 169) was an MTurk hosted survey that recruited participants from California, while Study 2 (N = 198) was a field experiment that recruited participants in Sardinia, Italy. Study 1 measured cost-benefit analyses, societal identification, and willingness to participate in public policymaking. Study 2 repeated the same procedures, with the exception that we manipulated costs of participation, and also measured participants’ trust in government. Study 1 confirmed our initial hypotheses – fewer costs predicted more willingness to participate, as did stronger state identification. However, Study 2 found an interactive effect of costs, identification, and trust on willingness to participate in public policymaking. Results confirm our hypotheses by showing that both costs and identification independently influence willingness to participate in public policymaking. Results also add to the literature by showing that these additive pathways can be influenced by trust in the source of governance.


2016 ◽  
Author(s):  
Dandan Cheng ◽  
Viet-Thang Nguyen ◽  
Noel Ndihokubwayo

Pyrrolizidine alkaloids (PAs), a typical kind of secondary metabolites in plants, have important roles on defense against herbivores and pathogens; however, specialist herbivores adapted to PAs can use them as cues for oviposition and feeding. Thus, in the native ranges, PA diversity and concentration in plants were selected by the balance between pressure from generalist and specialist herbivores. In introduced ranges, where the specialist herbivores are absent, the introduced plants could increase concentration and diversity of PAs. This predication is deduced from the Shift Defense Hypothesis (SDH). In this research, we investigated whether there were any differences between native and invasive Senecio vulgaris plants (from Europe and China, respectively) with regards to the PA composition and concentration. We grew the native and invasive S. vulgaris plants in an identical condition and harvested them when they started to bloom. Their roots and shoots were separately harvested and dried. PA composition and concentration from powder of the shoots and roots were detected by using liquid chromatography – tanderm mass spectrometry (LC-MS/MS). We identified 14 PAs which belongs to the structural group senecionine – like PAs. Most of them occurred in both the native and invasive S. vulgaris plants, except the usaramine N – oxide that was only found in the native ones. From the 14 PAs identified, only riddelliine N – oxide had significantly higher present frequency in the invasive plants than in the native plants. The invasive S. vulgaris plants had significantly lower concentration of 3 individual PAs (seneciphylline N – oxide, spartioidine and spartioidine N – oxide) than the native ones. These results demonstrated that PA diversity and concentration of some individual PAs tended to reduce in the invasive range of S. vulgaris. This is contrary to the predictions of the SDH that the invasive plants would produce more qualitative defense than the native ones, and it is probably an evidence that a little trade – off between defense and growth happened to the S. vulgaris in China.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Vinod Kumar Prajapati ◽  
Mahendra Varma ◽  
Jyothilakshmi Vadassery

Abstract Background The common cutworm, Spodoptera litura Fabricius is a leaf and fruit feeding generalist insect of the order Lepidoptera and a destructive agriculture pest. The broad host range of the herbivore is due to its ability to downregulate plant defense across different plants. The identity of Spodoptera litura released effectors that downregulate plant defense are largely unknown. The current study aims to identify genes encoding effector proteins from salivary glands of S. litura (Fab.). Results Head and salivary glands of Spodoptera litura were used for de-novo transcriptome analysis and effector prediction. Eight hundred ninety-nine proteins from the head and 330 from salivary gland were identified as secretory proteins. Eight hundred eight proteins from the head and 267 from salivary gland proteins were predicted to be potential effector proteins. Conclusions This study is the first report on identification of potential effectors from Spodoptera litura salivary glands.


Sign in / Sign up

Export Citation Format

Share Document