scholarly journals Syndecan Regulates Cellular Morphogenesis in Cooperation with the Netrin Guidance Pathway and Rho-family GTPases

2022 ◽  
Author(s):  
Raphael Dima ◽  
Marianne Bah Tahe ◽  
Yann A Chabi ◽  
Lise Rivollet ◽  
Anthony F Arena ◽  
...  

The establishment of complex cell shapes is essential for specific cellular functions, and thus critical in animal development and physiology. Heparan sulfate proteoglycans (HSPGs) are conserved glycoproteins that regulate interactions between extracellular signals and their receptors, to orchestrate morphogenetic events and elicit cellular responses. Although HSPG-regulated pathways have been implicated in regulating the guidance of neuronal migrations, whether HSPGs regulate earlier aspects of cellular development that dictate cell shape remains unknown. HSPGs consist of a protein core (e.g., Syndecan, Perlecan, Glypican, etc.) with attached heparan sulfate (HS) glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin family. Using mutations in the two C. elegans HS glycosyltransferases genes, rib-1 and rib-2, we reveal that HSPGs control the number of cellular projections in the epithelial excretory canal cell, which can form more than its normal four canals in these mutants. We identify SDN-1/Syndecan as the key HSPG that regulates the number of excretory canal cell projections in a cell-autonomous manner. We also find that Syndecan and guidance receptors for Netrin function in the same pathway to restrict the number of cellular projections. Furthermore, we show that the formation of extra projections in the absence of Syndecan requires the conserved Rho-family GTPases CED-10/Rac and MIG-2/RhoG. Our findings not only contribute to understanding the roles of conserved HSPGs in cellular morphogenetic events, but also reveal the existence of an HSPG-regulated system operating to guarantee that a precise number of cellular projections is established during cell development. Given the evolutionary conservation of developmental mechanisms and the molecules implicated, this work provides information relevant to understanding the cellular and molecular bases of the development of precise cellular morphologies in varied cell types across animals.

2020 ◽  
Vol 8 (3) ◽  
pp. 17 ◽  
Author(s):  
Matthew Buechner ◽  
Zhe Yang ◽  
Hikmat Al-Hashimi

Formation and regulation of properly sized epithelial tubes is essential for multicellular life. The excretory canal cell of C. elegans provides a powerful model for investigating the integration of the cytoskeleton, intracellular transport, and organismal physiology to regulate the developmental processes of tube extension, lumen formation, and lumen diameter regulation in a narrow single cell. Multiple studies have provided new understanding of actin and intermediate filament cytoskeletal elements, vesicle transport, and the role of vacuolar ATPase in determining tube size. Most of the genes discovered have clear homologues in humans, with implications for understanding these processes in mammalian tissues such as Schwann cells, renal tubules, and brain vasculature. The results of several new genetic screens are described that provide a host of new targets for future studies in this informative structure.


2021 ◽  
Author(s):  
Anthony F Arena ◽  
Daniel D Shaye

The Rho-family of small GTPases, which play crucial roles in development and disease, are regulated by many signal-transduction cascades, including G-protein-coupled receptor (GPCR)-heterotrimeric G-protein (Gα/β/γ) pathways. Using genetic approaches in C. elegans we identified a new role for Gα and Rho/Rac signaling in cell outgrowth during tubulogenesis and show that the Chloride Intracellular Channel (CLIC) protein EXC-4 is an evolutionarily-conserved player in this pathway. The gene exc-4 was identified by its role in tubulogenesis of the excretory canal (ExCa) cell: a unicellular tube required for osmoregulation and fluid clearance. We identified a new exc-4 loss-of-function allele that affects an evolutionarily conserved residue in the C-terminus. Using this mutant we identified genetic interactions between exc-4, Gα's and Rho-family GTPases, defining novel roles for Gα-encoding genes (gpa-12/Gα12/13, gpa-7/Gαi, egl-30/Gαq, and gsa-1/Gαs) and the Rho-family members ced-10/Rac and mig-2/RhoG in ExCa outgrowth. EXC-4 and human CLICs have conserved functions in tubulogenesis, and CLICs and Gα-Rho/Rac signaling regulate tubulogenesis during blood vessel development. Therefore, our work defines a primordial role for EXC-4/CLICs in Gα-Rho/Rac-signaling during tubulogenesis.


2010 ◽  
Vol 425 (3) ◽  
pp. 465-473 ◽  
Author(s):  
Claire M. Wells ◽  
Gareth E. Jones

The Rho-family GTPases Rho Rac and Cdc42 regulate many intracellular processes through their interaction with downstream effector proteins. The PAKs (p21-activated kinases) are a family of effector proteins for Rac and Cdc42. PAKs are important regulators of actin cytoskeletal dynamics, neurite outgrowth, cell survival, hormone signalling and gene transcription. There are six mammalian PAKs that can be divided into two groups: group I PAKs (PAK1–3) and group II PAKs (PAK4–6). Although the two PAK groups are architecturally similar, there are differences in their mode of regulation, suggesting that their cellular functions are likely to be different. Whereas much is known about group I PAKs, less is known about the more recently discovered PAK4, PAK5 and PAK6. This review will focus on the latest structural and functional results relating to the group II PAKs and discuss the emerging importance of group II PAKs in disease progression.


2007 ◽  
Vol 404 (3) ◽  
pp. 487-497 ◽  
Author(s):  
Monika Weisz Hubsman ◽  
Natalia Volinsky ◽  
Edward Manser ◽  
Deborah Yablonski ◽  
Ami Aronheim

The Paks (p21-activated kinases) Pak1, Pak2 and Pak3 are among the most studied effectors of the Rho-family GTPases, Rac, Cdc42 (cell division cycle 42) and Chp (Cdc42 homologous protein). Pak kinases influence a variety of cellular functions, but the process of Pak down-regulation, following activation, is poorly understood. In the present study, we describe for the first time a negative-inhibitory loop generated by the small Rho-GTPases Cdc42 and Chp, resulting in Pak1 inhibition. Upon overexpression of Chp, we unexpectedly observed a T-cell migration phenotype consistent with Paks inhibition. In line with this observation, overexpression of either Chp or Cdc42 caused a marked reduction in the level of Pak1 protein in a number of different cell lines. Chp-induced degradation was accompanied by ubiquitination of Pak1, and was dependent on the proteasome. The susceptibility of Pak1 to Chp-induced degradation depended on its p21-binding domain, kinase activity and a number of Pak1 autophosphorylation sites, whereas the PIX- (Pak-interacting exchange factor) and Nck-binding sites were not required. Together, these results implicate Chp-induced kinase autophosphorylation in the degradation of Pak1. The N-terminal domain of Chp was found to be required for Chp-induced degradation, although not for Pak1 activation, suggesting that Chp provides a second function, distinct from kinase activation, to trigger Pak degradation. Collectively, our results demonstrate a novel mechanism of signal termination mediated by the Rho-family GTPases Chp and Cdc42, which results in ubiquitin-mediated degradation of one of their direct effectors, Pak1.


2004 ◽  
Vol 31 (S 1) ◽  
Author(s):  
S Seta ◽  
M Herr ◽  
S Horn ◽  
D Koch ◽  
T Vogt ◽  
...  

Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 185-206 ◽  
Author(s):  
Rebecca M Terns ◽  
Peggy Kroll-Conner ◽  
Jiangwen Zhu ◽  
Sooyoun Chung ◽  
Joel H Rothman

To identify genomic regions required for establishment and patterning of the epidermis, we screened 58 deficiencies that collectively delete at least ∼67% of the Caenorhabditis elegans genome. The epidermal pattern of deficiency homozygous embryos was analyzed by examining expression of a marker specific for one of the three major epidermal cell types, the seam cells. The organization of the epidermis and internal organs was also analyzed using a monoclonal antibody specific for epithelial adherens junctions. While seven deficiencies had no apparent effect on seam cell production, 21 were found to result in subnormal, and five in excess numbers of these cells. An additional 23 deficiencies blocked expression of the seam cell marker, in some cases without preventing cell proliferation. Two deficiencies result in multinucleate seam cells. Deficiencies were also identified that result in subnormal numbers of epidermal cells, hyperfusion of epidermal cells into a large syncytium, or aberrant epidermal differentiation. Finally, analysis of internal epithelia revealed deficiencies that cause defects in formation of internal organs, including circularization of the intestine and bifurcation of the pharynx lumen. This study reveals that many regions of the C. elegans genome are required zygotically for patterning of the epidermis and other epithelia.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1611-1622 ◽  
Author(s):  
Go Shioi ◽  
Michinari Shoji ◽  
Masashi Nakamura ◽  
Takeshi Ishihara ◽  
Isao Katsura ◽  
...  

Abstract Using a pan-neuronal GFP marker, a morphological screen was performed to detect Caenorhabditis elegans larval lethal mutants with severely disorganized major nerve cords. We recovered and characterized 21 mutants that displayed displacement or detachment of the ventral nerve cord from the body wall (Ven: ventral cord abnormal). Six mutations defined three novel genetic loci: ven-1, ven-2, and ven-3. Fifteen mutations proved to be alleles of previously identified muscle attachment/positioning genes, mup-4, mua-1, mua-5, and mua-6. All the mutants also displayed muscle attachment/positioning defects characteristic of mua/mup mutants. The pan-neuronal GFP marker also revealed that mutants of other mua/mup loci, such as mup-1, mup-2, and mua-2, exhibited the Ven defect. The hypodermis, the excretory canal, and the gonad were morphologically abnormal in some of the mutants. The pleiotropic nature of the defects indicates that ven and mua/mup genes are required generally for the maintenance of attachment of tissues to the body wall in C. elegans.


Genetics ◽  
2021 ◽  
Author(s):  
Mélissa Cizeron ◽  
Laure Granger ◽  
Hannes E BÜlow ◽  
Jean-Louis Bessereau

Abstract Heparan sulfate proteoglycans contribute to the structural organization of various neurochemical synapses. Depending on the system, their role involves either the core protein or the glycosaminoglycan chains. These linear sugar chains are extensively modified by heparan sulfate modification enzymes, resulting in highly diverse molecules. Specific modifications of glycosaminoglycan chains may thus contribute to a sugar code involved in synapse specificity. Caenorhabditis elegans is particularly useful to address this question because of the low level of genomic redundancy of these enzymes, as opposed to mammals. Here, we systematically mutated the genes encoding heparan sulfate modification enzymes in C. elegans and analyzed their impact on excitatory and inhibitory neuromuscular junctions. Using single chain antibodies that recognize different heparan sulfate modification patterns, we show in vivo that these two heparan sulfate epitopes are carried by the SDN-1 core protein, the unique C. elegans syndecan orthologue, at neuromuscular junctions. Intriguingly, these antibodies differentially bind to excitatory and inhibitory synapses, implying unique heparan sulfate modification patterns at different neuromuscular junctions. Moreover, while most enzymes are individually dispensable for proper organization of neuromuscular junctions, we show that 3-O-sulfation of SDN-1 is required to maintain wild-type levels of the extracellular matrix protein MADD-4/Punctin, a central synaptic organizer that defines the identity of excitatory and inhibitory synaptic domains at the plasma membrane of muscle cells.


Sign in / Sign up

Export Citation Format

Share Document