scholarly journals The C-terminal domain of SEC-10 is fundamental for exocyst function, Spitzenkorper organization and cell morphogenesis in Neurospora crassa.

2022 ◽  
Author(s):  
Alfredo Figueroa-Melendez ◽  
Leonora Martinez-Nunez ◽  
Adriana Maria Rico-Ramirez ◽  
Juan Manuel Martinez-Andrade ◽  
Mary Munson ◽  
...  

The exocyst is a conserved multimeric complex that participates in the final steps of the secretion of vesicles. In the filamentous fungus Neurospora crassa, the exocyst is crucial for polar growth, morphology, and the organization of the Spitzenkorper (Spk), the apical body where secretory vesicles accumulate before being delivered to the plasma membrane. In the highly polarized cells of N. crassa, the exocyst subunits SEC-3, SEC-5, SEC-6, SEC-8, and SEC-15 were previously found localized at the plasma membrane of the apices of the cells, while EXO-70 and EXO-84 occupied the frontal outer layer of the Spk, occupied by vesicles. The localization of SEC-10 had remained so far elusive. In this work, SEC-10 was tagged with the green fluorescent protein (GFP) either at its N- or C-terminus and found localized at the plasma membrane of growing hyphal tips, similar to what was previously observed for some exocyst subunits. While expression of an N-terminally tagged version of SEC-10 at its native locus was fully viable, expression of a C-terminally tagged version at its native locus resulted in severe hyphal growth and polarity defects. Additionally, a sec-10 knockout mutant in a heterokaryotic state (with genetically different nuclei) was viable but showed a strongly aberrant phenotype, confirming that this subunit is essential to maintain hyphal morphogenesis. Transmission electron microscopy analysis revealed the lack of a Spk in the SEC-10-GFP strain, suggesting a critical role of the exocyst in the vesicular organization at the Spk. Mass spectrometry analysis revealed fewer peptides of exocyst subunits interacting with SEC-10-GFP than with GFP-SEC-10, suggesting an essential role of the C-terminus of SEC-10 in exocyst assembly and/or stability. Altogether, our data suggest that an unobstructed C-terminus of SEC-10 is indispensable for the exocyst complex function and that a GFP tag could be blocking important subunit-subunit interactions.

2012 ◽  
Vol 11 (4) ◽  
pp. 494-506 ◽  
Author(s):  
Ming-Liang Liu ◽  
Meng-Chao Yao

ABSTRACT Autophagy is an evolutionarily conserved mechanism for the degradation of cellular components, but its role in enucleation during differentiation has not been established. Tetrahymena thermophila is a unicellular eukaryote with two functionally distinct nuclei, the somatic (macro-) and the germ line (micro-) nuclei. These nuclei are produced during sexual reproduction (conjugation), which involves differentiation and selective degradation of several specific nuclei. To examine the role of autophagy in nuclear degradation, we studied the function of two ATG8 genes in Tetrahymena . Through fluorescent protein tagging, we found that both proteins are targeted to degrading nuclei at specific stages, with some enrichment on the nuclear periphery, suggesting the formation of autophagosomes surrounding these nuclei. In addition, ATG8 knockout mutant cells showed a pronounced delay in nuclear degradation without apparently preventing the completion of other developmental events. This evidence provided direct support for a critical role for autophagy in programmed nuclear degradation. The results also showed differential roles for two ATG8 genes, with ATG8-65 playing a more significant role in starvation than ATG8-2 , although both are important in nuclear degradation.


2021 ◽  
Vol 118 (23) ◽  
pp. e2022704118
Author(s):  
Jingqi Dai ◽  
Aurore Sanchez ◽  
Céline Adam ◽  
Lepakshi Ranjha ◽  
Giordano Reginato ◽  
...  

In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ’s dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.


2019 ◽  
Vol 47 (17) ◽  
pp. 9160-9179 ◽  
Author(s):  
Soon Young Hwang ◽  
Mi Ae Kang ◽  
Chul Joon Baik ◽  
Yejin Lee ◽  
Ngo Thanh Hang ◽  
...  

Abstract The pleiotropic CCCTC-binding factor (CTCF) plays a role in homologous recombination (HR) repair of DNA double-strand breaks (DSBs). However, the precise mechanistic role of CTCF in HR remains largely unclear. Here, we show that CTCF engages in DNA end resection, which is the initial, crucial step in HR, through its interactions with MRE11 and CtIP. Depletion of CTCF profoundly impairs HR and attenuates CtIP recruitment at DSBs. CTCF physically interacts with MRE11 and CtIP and promotes CtIP recruitment to sites of DNA damage. Subsequently, CTCF facilitates DNA end resection to allow HR, in conjunction with MRE11–CtIP. Notably, the zinc finger domain of CTCF binds to both MRE11 and CtIP and enables proficient CtIP recruitment, DNA end resection and HR. The N-terminus of CTCF is able to bind to only MRE11 and its C-terminus is incapable of binding to MRE11 and CtIP, thereby resulting in compromised CtIP recruitment, DSB resection and HR. Overall, this suggests an important function of CTCF in DNA end resection through the recruitment of CtIP at DSBs. Collectively, our findings identify a critical role of CTCF at the first control point in selecting the HR repair pathway.


2015 ◽  
Vol 309 (2) ◽  
pp. F109-F119 ◽  
Author(s):  
Corey J. Ketchem ◽  
Syed J. Khundmiri ◽  
Adam E. Gaweda ◽  
Rebecca Murray ◽  
Barbara J. Clark ◽  
...  

Na+/H+ exchanger regulatory factor (NHERF1) plays a critical role in the renal transport of phosphate by binding to Na+-Pi cotransporter (NpT2a) in the proximal tubule. While the association between NpT2a and NHERF1 in the apical membrane is known, the role of NHERF1 to regulate the trafficking of NpT2a has not been studied. To address this question, we performed cell fractionation by sucrose gradient centrifugation in opossum kidney (OK) cells placed in low-Pi medium to stimulate forward trafficking of NpT2a. Immunoblot analysis demonstrated expression of NpT2a and NHERF1 in the endoplasmic reticulum (ER)/Golgi. Coimmunoprecipitation demonstrated a NpT2a-NHERF1 interaction in the ER/Golgi. Low-Pi medium for 4 and 8 h triggered a decrease in NHERF1 in the plasma membrane with a corresponding increase in the ER/Golgi. Time-lapse total internal reflection fluorescence imaging of OK cells placed in low-Pi medium, paired with particle tracking and mean square displacement analysis, indicated active directed movement of NHERF1 at early and late time points, whereas NpT2a showed active movement only at later times. Silence of NHERF1 in OK cells expressing green fluorescent protein (GFP)-NpT2a resulted in an intracellular accumulation of GFP-NpT2a. Transfection with GFP-labeled COOH-terminal (TRL) PDZ-binding motif deleted or wild-type NpT2a in OK cells followed by cell fractionation and immunoprecipitation confirmed that the interaction between NpT2a and NHERF1 was dependent on the TRL motif of NpT2a. We conclude that appropriate trafficking of NpT2a to the plasma membrane is dependent on the initial association between NpT2a and NHERF1 through the COOH-terminal TRL motif of NpT2a in the ER/Golgi and requires redistribution of NHERF1 to the ER/Golgi.


2009 ◽  
Vol 8 (12) ◽  
pp. 1845-1855 ◽  
Author(s):  
Barry J. Bowman ◽  
Marija Draskovic ◽  
Michael Freitag ◽  
Emma Jean Bowman

ABSTRACT We wanted to examine the cellular locations of four Neurospora crassa proteins that transport calcium. However, the structure and distribution of organelles in live hyphae of N. crassa have not been comprehensively described. Therefore, we made recombinant genes that generate translational fusions of putative organellar marker proteins with green or red fluorescent protein. We observed putative endoplasmic reticulum proteins, encoded by grp-78 and dpm, in the nuclear envelope and associated membranes. Proteins of the vacuolar membrane, encoded by vam-3 and vma-1, were in an interconnected network of small tubules and vesicles near the hyphal tip, while in more distal regions they were in large and small spherical vacuoles. Mitochondria, visualized with tagged ARG-4, were abundant in all regions of the hyphae. Similarly, we tagged the four N. crassa proteins that transport calcium with green or red fluorescent protein to examine their cellular locations. NCA-1 protein, a homolog of the SERCA-type Ca2+-ATPase of animal cells, colocalized with the endoplasmic reticulum markers. The NCA-2 and NCA-3 proteins are homologs of Ca2+-ATPases in the vacuolar membrane in yeast or in the plasma membrane in animal cells. They colocalized with markers in the vacuolar membrane, and they also occurred in the plasma membrane in regions of the hyphae more than 1 mm from the tip. The cax gene encodes a Ca2+/H+ exchange protein found in vacuoles. As expected, the CAX protein localized to the vacuolar compartment. We observed, approximately 50 to 100 μm from the tip, a few spherical organelles that had high amounts of tagged CAX protein and tagged subunits of the vacuolar ATPase (VMA-1 and VMA-5). We suggest that this organelle, not described previously in N. crassa, may have a role in sequestering calcium.


2013 ◽  
Vol 12 (7) ◽  
pp. 1020-1032 ◽  
Author(s):  
Constanze Seidel ◽  
Sergio David Moreno-Velásquez ◽  
Meritxell Riquelme ◽  
Reinhard Fischer

ABSTRACT Biological motors are molecular nanomachines, which convert chemical energy into mechanical forces. The combination of mechanoenzymes with structural components, such as the cytoskeleton, enables eukaryotic cells to overcome entropy, generate molecular gradients, and establish polarity. Hyphae of filamentous fungi are among the most polarized cells, and polarity defects are most obvious. Here, we studied the role of the kinesin-3 motor, NKIN2, in Neurospora crassa . We found that NKIN2 localizes as fast-moving spots in the cytoplasm of mature hyphae. To test whether the spots represented early endosomes, the Rab5 GTPase YPT52 was used as an endosomal marker. NKIN2 colocalized with YPT52. Deletion of nkin2 caused strongly reduced endosomal movement. Combined, these results confirm the involvement of NKIN2 in early endosome transport. Introduction of a rigor mutation into NKIN2 labeled with green fluorescent protein (GFP) resulted in decoration of microtubules. Interestingly, NKIN2 rigor was associated with a subpopulation of microtubules, as had been shown earlier for the Aspergillus nidulans orthologue UncA. Other kinesins did not show this specificity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1141-1141
Author(s):  
Satish Babu Cheepala ◽  
Kazumasa Takenaka ◽  
Tamara I. Pestina ◽  
Carl W. Jackson ◽  
Schuetz John

Abstract Abstract 1141 Cyclic nucleotides have an important role in platelet aggregation and the role of phosphodiesterases in regulating their concentration is well known. Currently it is unknown if plasma membrane cyclic nucleotide export proteins regulate cyclic nucleotide concentrations in platelets. The ATP-binding cassette transporter, ABCC4 functions as a cyclic nucleotide exporter that is highly expressed in platelets. However, its role as a cyclic nucleotide transporter in platelets is unknown, because it was reportedly localized intracellularly in the platelet dense granules. This original report (Jedlitschky, Tirschmann et al. 2004) evaluated ABCC4 localization by immune-fluorescence of platelets after attachment to collagen coated coverslips. However, collagen attachment activates platelets causing mobilization and fusion of alpha and dense granules to the plasma membrane, thus rendering conditions that distinguish between plasma membrane and dense granules almost impossible. To resolve this problem we isolated the platelets under conditions that minimize activation during isolation. Subsequently, these platelets membranes were labeled with the cell impermeable biotinylating agent (EZ-Link Sulfo-NHS-LC-LC Biotin). Analysis of total platelet lysate detected the dense granule marker, P-selectin and Abcc4. However, after precipitation of the plasma membrane with streptavidin-beads, we detected only Abcc4. This indicates Mrp4 is at the plasma membrane. We confirmed Abcc4 localization by confocal microscopy on platelets that were treated with a monoclonal antibody specific to Abcc4. Evidence that Abcc4 regulates cyclic nucleotide levels under basal conditions was then provided by the findings that Abcc4-null platelets have elevated cyclic nucleotides. We further used the Abcc4-null mouse model to explore the role of Abcc4 in platelet biology. The Abcc4-null mouse does not have any change in the platelet or dense granules number compared to the wild type mouse. Platelet activation in vivo can be initiated by interaction with collagen through the GPVI receptor that is expressed at the plasma membrane of the platelets. At the molecular level, the initiation of platelet activation by collagen results in an increase in the cyclic nucleotide concentration and phosphorylation of vasodilator-stimulated phosphoprotein (VASP) which can attenuate aggregation. To determine the Abcc4 role in this process we exposed Abcc4-null platelets to collagen and discovered that these platelets have impaired activation in response to collagen. However, Abcc4-null platelets activated by thrombin or ADP, which activate either G-coupled PAR receptors or P2Y12 receptor respectively, show an aggregation profile almost identical to wildtype platelets, thus indicating the defect in Abcc4-null platelet aggregation is specific to the collagen initiated pathway. To understand the basis for the impaired aggregation of Abcc4-null platelets, we examined VASP phosphorylation after collagen treatment, and discovered that the cyclic nucleotide dependent phosphorylation of VASP (Ser 157) is elevated in the Abcc4-null platelets. These results strongly suggest that Abcc4-null platelets have impaired GPVI activation by collagen due to elevated cyclic nucleotide concentrations. Based on these studies we conclude that Abcc4 plays a critical role in regulating platelet cyclic nucleotide concentrations and its absence or perhaps inhibition (by drugs) impairs the aggregation response to collagen. Because many antiplatelet drugs are potent inhibitors of Abcc4 (e.g., Dipyridamole and Sildenafil) these findings have strong implications for not just the development of antiplatelet drugs, but also for understanding the role of Abcc4 in regulating intracellular nucleotide levels. Jedlitschky, G., K. Tirschmann, et al. (2004). “The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage.” Blood 104(12): 3603–10. This work was supported by NIH and by the American Lebanese Syrian Associated Charities (ALSAC). Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 15 (4) ◽  
pp. 2027-2037 ◽  
Author(s):  
Beatrice M. Tam ◽  
Orson L. Moritz ◽  
David S. Papermaster

Protein targeting is essential for domain specialization in polarized cells. In photoreceptors, three distinct membrane domains exist in the outer segment: plasma membrane, disk lamella, and disk rim. Peripherin/retinal degeneration slow (rds) and rom-1 are photoreceptor-specific members of the transmembrane 4 superfamily of transmembrane proteins, which participate in disk morphogenesis and localize to rod outer segment (ROS) disk rims. We examined the role of their C termini in targeting by generating transgenic Xenopus laevis expressing green fluorescent protein (GFP) fusion proteins. A GFP fusion containing residues 317-336 of peripherin/rds localized uniformly to disk membranes. A longer fusion (residues 307-346) also localized to the ROS but exhibited higher affinity for disk rims than disk lamella. In contrast, the rom-1 C terminus did not promote ROS localization. The GFP-peripherin/rds fusion proteins did not immunoprecipitate with peripherin/rds or rom-1, suggesting this region does not form intermolecular interactions and is not involved in subunit assembly. Presence of GFP-peripherin/rds fusions correlated with disrupted incisures, disordered ROS tips, and membrane whorls. These abnormalities may reflect competition of the fusion proteins for other proteins that interact with peripherin/rds. This work describes novel roles for the C terminus of peripherin/rds in targeting and maintaining ROS structure and its potential involvement in inherited retinal degenerations.


2006 ◽  
Vol 74 (5) ◽  
pp. 2552-2561 ◽  
Author(s):  
Shira D. P. Rabin ◽  
Jeffrey L. Veesenmeyer ◽  
Kathryn T. Bieging ◽  
Alan R. Hauser

ABSTRACT ExoU, a phospholipase injected into host cells by the type III secretion system of Pseudomonas aeruginosa, leads to rapid cytolytic cell death. Although the importance of ExoU in infection is well established, the mechanism by which this toxin kills host cells is less clear. To gain insight into how ExoU causes cell death, we examined its subcellular localization following transfection or type III secretion/translocation into HeLa cells. Although rapid cell lysis precluded visualization of wild-type ExoU by fluorescence microscopy, catalytically inactive toxin was readily detected at the periphery of HeLa cells. Biochemical analysis confirmed that ExoU was targeted to the membrane fraction of transfected cells. Visualization of ExoU peptides fused with green fluorescent protein indicated that the domain responsible for this targeting was in the C terminus of ExoU, between residues 550 and 687. Localization to the plasma membrane occurred within 1 h of expression, which is consistent with the kinetics of cytotoxicity. Together, these results indicate that a domain between residues 550 and 687 of ExoU targets this toxin to the plasma membrane, a process that may be important in cytotoxicity.


2006 ◽  
Vol 17 (2) ◽  
pp. 907-916 ◽  
Author(s):  
Anne Straube ◽  
Gerd Hause ◽  
Gero Fink ◽  
Gero Steinberg

Conventional kinesin is a ubiquitous organelle transporter that moves cargo toward the plus-ends of microtubules. In addition, several in vitro studies indicated a role of conventional kinesin in cross-bridging and sliding microtubules, but in vivo evidence for such a role is missing. In this study, we show that conventional kinesin mediates microtubule-microtubule interactions in the model fungus Ustilago maydis. Live cell imaging and ultrastructural analysis of various mutants in Kin1 revealed that this kinesin-1 motor is required for efficient microtubule bundling and participates in microtubule bending in vivo. High levels of Kin1 led to increased microtubule bending, whereas a rigor-mutation in the motor head suppressed all microtubule motility and promoted strong microtubule bundling, indicating that kinesin can form cross-bridges between microtubules in living cells. This effect required a conserved region in the C terminus of Kin1, which was shown to bind microtubules in vitro. In addition, a fusion protein of yellow fluorescent protein and the Kin1tail localized to microtubule bundles, further supporting the idea that a conserved microtubule binding activity in the tail of conventional kinesins mediates microtubule-microtubule interactions in vivo.


Sign in / Sign up

Export Citation Format

Share Document