scholarly journals B cells discriminate HIV-1 Envelope protein affinities by sensing antigen binding association rates

2022 ◽  
Author(s):  
Md. Alamgir Hossain ◽  
Kara Anasti ◽  
Brian Watts ◽  
Kenneth Cronin ◽  
Advaiti Pai Kane ◽  
...  

HIV-1 Envelope (Env) proteins designed to induce neutralizing antibody responses allow study of the role of affinities (equilibrium dissociation constant, KD) and kinetic rates (association/dissociation rates) on B cell antigen recognition. It is unclear whether affinity discrimination during B cell activation is based solely on Env protein binding KD, and whether B cells discriminate between proteins of similar affinities but that bind with different kinetic rates. Here we used a panel of Env proteins and Ramos B cell lines expressing IgM BCRs with specificity for CD4 binding-site broadly neutralizing (bnAb) or a precursor antibody to study the role of antigen binding kinetic rates on both early (proximal/distal signaling) and late events (BCR/antigen internalization) in B cell activation. Our results support a kinetic model for B cell activation in which Env protein affinity discrimination is based not on overall KD, but on sensing of association rate and a threshold antigen-BCR half-life.

1998 ◽  
Vol 188 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Thomas Fehr ◽  
Robert C. Rickert ◽  
Bernhard Odermatt ◽  
Jürgen Roes ◽  
Klaus Rajewsky ◽  
...  

Coligation of CD19, a molecule expressed during all stages of B cell development except plasmacytes, lowers the threshold for B cell activation with anti-IgM by a factor of 100. The cytoplasmic tail of CD19 contains nine tyrosine residues as possible phosphorylation sites and is postulated to function as the signal transducing element for complement receptor (CR)2. Generation and analysis of CD19 gene–targeted mice revealed that T cell–dependent (TD) antibody responses to proteinaceous antigens were impaired, whereas those to T cell–independent (TI) type 2 antigens were normal or even augmented. These results are compatible with earlier complement depletion studies and the postulated function of CD19. To analyze the role of CD19 in antiviral antibody responses, we immunized CD19−/− mice with viral antigens of TI-1, TI-2, and TD type. The effect of CD19 on TI responses was more dependent on antigen dose and replicative capacity than on antigen type. CR blocking experiments confirmed the role of CD19 as B cell signal transducer for complement. In contrast to immunization with protein antigens, infection of CD19−/− mice with replicating virus led to generation of specific germinal centers, which persisted for >100 d, whereas maintenance of memory antibody titers as well as circulating memory B cells was fully dependent on CD19. Thus, our study confirms a costimulatory role of CD19 on B cells under limiting antigen conditions and indicates an important role for B cell memory.


2016 ◽  
Vol 113 (5) ◽  
pp. E558-E567 ◽  
Author(s):  
Jing Wang ◽  
Shan Tang ◽  
Zhengpeng Wan ◽  
Yiren Gao ◽  
Yiyun Cao ◽  
...  

Antigen binding to the B-cell receptor (BCR) induces several responses, resulting in B-cell activation, proliferation, and differentiation. However, it has been difficult to study these responses due to their dynamic, fast, and transient nature. Here, we attempted to solve this problem by developing a controllable trigger point for BCR and antigen recognition through the construction of a photoactivatable antigen, caged 4-hydroxy-3-nitrophenyl acetyl (caged-NP). This photoactivatable antigen system in combination with live cell and single molecule imaging techniques enabled us to illuminate the previously unidentified B-cell probing termination behaviors and the precise BCR sorting mechanisms during B-cell activation. B cells in contact with caged-NP exhibited probing behaviors as defined by the unceasing extension of membrane pseudopods in random directions. Further analyses showed that such probing behaviors are cell intrinsic with strict dependence on F-actin remodeling but not on tonic BCR signaling. B-cell probing behaviors were terminated within 4 s after photoactivation, suggesting that this response was sensitive and specific to BCR engagement. The termination of B-cell probing was concomitant with the accumulation response of the BCRs into the BCR microclusters. We also determined the Brownian diffusion coefficient of BCRs from the same B cells before and after BCR engagement. The analysis of temporally segregated single molecule images of both BCR and major histocompatibility complex class I (MHC-I) demonstrated that antigen binding induced trapping of BCRs into the BCR microclusters is a fundamental mechanism for B cells to acquire antigens.


2010 ◽  
Vol 10 ◽  
pp. 2254-2264 ◽  
Author(s):  
Taras Lyubchenko

An increase in intracellular Ca2+concentration is one of the major initial steps in B-cell activation that occurs within minutes after antigen receptor (BCR) engagement. In recent years, significant advances have been made in characterizing molecular mechanisms of Ca2+signaling in lymphocytes, although the majority of work was done on T cells. This mini-review discusses several underexplored areas of Ca2+signaling in B cells: (1) Ca2+signaling in immune synapse and multifaceted Ca2+responses within a single cell, (2) source of Ca2+involved in Ca2+-dependent protein phosphorylation events and the role of store-operated influx, (3) role of BCR coreceptors in Ca2+signaling, and (4) Ca2+signaling and maintenance of B-cell tolerance and clinical significance of Ca2+signaling alterations.


2015 ◽  
Vol 90 (4) ◽  
pp. 2150-2154 ◽  
Author(s):  
Sang-Hoon Sin ◽  
Sun Ah Kang ◽  
Yongbaek Kim ◽  
Anthony Eason ◽  
Kelly Tan ◽  
...  

Interleukin 6 (IL-6) is considered a proliferation and survival factor for B cells. To assess the role of IL-6 in Kaposi sarcoma-associated herpesvirus (KSHV) latency, KSHV latency locus-transgenic mice (referred to as latency mice) lacking IL-6 were evaluated. IL-6−/−latency mice had the same phenotypes as the latency mice, i.e., increased frequency of marginal zone B cells, hyperplasia, and hyperglobulinemia, indicating that the KSHV latency locus, which includes all viral microRNAs (miRNAs), can compensate for lack of IL-6 in premalignant B cell activation.


1983 ◽  
Vol 157 (5) ◽  
pp. 1529-1543 ◽  
Author(s):  
M Howard ◽  
S B Mizel ◽  
L Lachman ◽  
J Ansel ◽  
B Johnson ◽  
...  

In this report we describe conditions for polyclonal activation of small numbers of highly purified mouse B lymphocytes. Three signals are required for induction of DNA synthesis by the particular subset of small B lymphocytes investigated: a signal delivered by antibodies specific for the IgM receptor expressed on the B cell membrane; a signal delivered by a T cell-derived factor (B cell growth factor [BCGF]); and a signal delivered by the macrophage-derived factor interleukin 1 (IL-1). The conclusion that IL-1 has B cell co-stimulator activity is based on the findings that highly purified preparations of mouse and human IL-1 have the capacity to cause proliferation in B cells treated with anti-IgM and BCGF. Such cultures show an absolute dependence on exogenously added IL-1 when 2-mercaptoethanol is omitted from the medium. BCGF and IL-1 each act in a non-antigen-specific, non-H-2-restricted, synergistic manner. Their requirement is not observed when B cells are cultured at high density, presumably reflecting accessory cell contamination and endogenous factor production under these conditions. The B cell activation induced by these three signals is restricted to proliferation without the production of antibody-forming cells.


1996 ◽  
Vol 183 (1) ◽  
pp. 329-334 ◽  
Author(s):  
T Benatar ◽  
R Carsetti ◽  
C Furlonger ◽  
N Kamalia ◽  
T Mak ◽  
...  

CD45 expression is essential for immunoglobulin (Ig)-mediated B cell activation. Treatments with either anti-Ig or anti-CD45 suggest that CD45 may facilitate early signaling events such as calcium mobilization, and phosphoinositide hydrolyis as well as later events leading to transcription of genes such as c-myc. To examine the role of CD45 more extensively, CD45-deficient mice were generated by disruption of exon 6. Although normal numbers of B cells were found in peripheral lymphoid tissues, CD45-deficient cells failed to proliferate upon IgM crosslinking. In the present study, we demonstrate that the fraction of high buoyant density B cells is reduced while low buoyant density cells are increased. Moreover, there is a significant decline in the number of splenic B cells of the mature IgDhi, IgMlo phenotype. Although both the basal and anti-Ig-induced levels of phosphorylation of Ig-alpha and phospholipase C gamma 2 are indistinguishable from that observed in CD45+ control B cells, a major distinction was found in Ca2+ mobilization. While anti-Ig-induced mobilization of intracellular Ca2+ stores was normal, influx from extracellular sources was abrogated. This finding reveals a novel pathway of regulating B cell responses mediated by CD45.


1986 ◽  
Vol 164 (3) ◽  
pp. 944-949 ◽  
Author(s):  
E C Snow ◽  
J D Fetherston ◽  
S Zimmer

The stimulation of hapten-specific B cell populations with the thymus-dependent antigen, TNP-KLH, was found to induce elevated levels of c-myc mRNA by 2 h. A similar treatment with carrier protein alone did not elevate c-myc mRNA above the level seen in the nonstimulated, resting B cells. These results indicate that antigen binding to the sIg receptor, in the absence of Th cell involvement, directly signals the antigen-binding cell and implicates the active participation of sIg during the process of antigen-mediated B cell activation.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800060 ◽  
Author(s):  
Carlson Tsui ◽  
Paula Maldonado ◽  
Beatriz Montaner ◽  
Aldo Borroto ◽  
Balbino Alarcon ◽  
...  

During B-cell activation, the dynamic reorganisation of the cytoskeleton is crucial for multiple cellular responses, such as receptor signalling, cell spreading, antigen internalisation, intracellular trafficking, and antigen presentation. However, the role of intermediate filaments (IFs), which represent a major component of the mammalian cytoskeleton, is not well defined. Here, by using multiple super-resolution microscopy techniques, including direct stochastic optical reconstruction microscopy, we show that IFs in B cells undergo drastic reorganisation immediately upon antigen stimulation and that this reorganisation requires actin and microtubules. Although the loss of vimentin in B cells did not impair B-cell development, receptor signalling, and differentiation, vimentin-deficient B cells exhibit altered positioning of antigen-containing and lysosomal associated membrane protein 1 (LAMP1+) compartments, implying that vimentin may play a role in the fine-tuning of intracellular trafficking. Indeed, vimentin-deficient B cells exhibit impaired antigen presentation and delayed antibody responses in vivo. Thus, our study presents a new perspective on the role of IFs in B-cell activation.


Sign in / Sign up

Export Citation Format

Share Document