scholarly journals Mechanisms of A-type lamin targeting to nuclear ruptures are disrupted in LMNA- and BANF1- associated progerias

2022 ◽  
Author(s):  
Rhiannon M Sears ◽  
Kyle J Roux

Mutations in the genes LMNA and BANF1 can lead to accelerated aging syndromes called progeria. The protein products of these genes, A-type lamins and BAF, respectively, are nuclear envelope (NE) proteins that interact and participate in various cellular processes, including nuclear envelope rupture and repair. BAF localizes to sites of nuclear rupture and recruits NE-repair machinery, including the LEM-domain proteins, ESCRT-III complex, A-type lamins, and membranes. Here, we show that it is a mobile, nucleoplasmic population of A-type lamins that is rapidly recruited to ruptures in a BAF-dependent manner via BAF′s association with the Ig-like β fold domain of A-type lamins. These initially mobile lamins become progressively stabilized at the site of rupture. Farnesylated prelamin A and lamin B1 fail to localize to nuclear ruptures, unless that farnesylation is inhibited. Progeria-associated LMNA mutations inhibit the recruitment affected A-type lamin to nuclear ruptures, due to either permanent farnesylation or inhibition of BAF binding. A progeria-associated BAF mutant targets to nuclear ruptures but is unable to recruit A-type lamins. Together, these data reveal the mechanisms that determine how lamins respond to nuclear ruptures and how progeric mutations of LMNA and BANF1 impair recruitment of A-type lamins to nuclear ruptures.

2011 ◽  
Vol 39 (6) ◽  
pp. 1698-1704 ◽  
Author(s):  
Giovanna Lattanzi

Prelamin A is the precursor protein of lamin A, a major constituent of the nuclear lamina in higher eukaryotes. Increasing attention to prelamin A processing and function has been given after the discovery, from 2002 to 2004, of diseases caused by prelamin A accumulation. These diseases, belonging to the group of laminopathies and mostly featuring LMNA mutations, are characterized, at the clinical level, by different degrees of accelerated aging, and adipose tissue, skin and bone abnormalities. The outcome of studies conducted in the last few years consists of three major findings. First, prelamin A is processed at different rates under physiological conditions depending on the differentiation state of the cell. This means that, for instance, in muscle cells, prelamin A itself plays a biological role, besides production of mature lamin A. Secondly, prelamin A post-translational modifications give rise to different processing intermediates, which elicit different effects in the nucleus, mostly by modification of the chromatin arrangement. Thirdly, there is a threshold of toxicity, especially of the farnesylated form of prelamin A, whose accumulation is obviously linked to cell and organism senescence. The present review is focused on prelamin A-mediated nuclear envelope modifications that are upstream of chromatin dynamics and gene expression mechanisms regulated by the lamin A precursor.


2021 ◽  
Author(s):  
Eun Seon Kim ◽  
Chang Geon Chung ◽  
Jeong Hyang Park ◽  
Byung Su Ko ◽  
Sung Soon Park ◽  
...  

Abstract RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP, Staufen, may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS—but not with mutated endogenous NLS—potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/−), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/− is protective. Stau+/− also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Mary Frances Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Mirghani Mohamed ◽  
Edwin Swiatlo ◽  
...  

Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.


2014 ◽  
Vol 205 (4) ◽  
pp. 457-475 ◽  
Author(s):  
Dipen Rajgor ◽  
Jason A. Mellad ◽  
Daniel Soong ◽  
Jerome B. Rattner ◽  
Marvin J. Fritzler ◽  
...  

Nesprins are a multi-isomeric family of spectrin-repeat (SR) proteins, predominantly known as nuclear envelope scaffolds. However, isoforms that function beyond the nuclear envelope remain poorly examined. Here, we characterize p50Nesp1, a 50-kD isoform that localizes to processing bodies (PBs), where it acts as a microtubule-associated protein capable of linking mRNP complexes to microtubules. Overexpression of dominant-negative p50Nesp1 caused Rck/p54, but not GW182, displacement from microtubules, resulting in reduced PB movement and cross talk with stress granules (SGs). These cells disassembled canonical SGs induced by sodium arsenite, but not those induced by hydrogen peroxide, leading to cell death and revealing PB–microtubule attachment is required for hydrogen peroxide-induced SG anti-apoptotic functions. Furthermore, p50Nesp1 was required for miRNA-mediated silencing and interacted with core miRISC silencers Ago2 and Rck/p54 in an RNA-dependent manner and with GW182 in a microtubule-dependent manner. These data identify p50Nesp1 as a multi-functional PB component and microtubule scaffold necessary for RNA granule dynamics and provides evidence for PB and SG micro-heterogeneity.


2019 ◽  
Vol 3 (1) ◽  
pp. 105-130 ◽  
Author(s):  
Tyler G. Demarest ◽  
Mansi Babbar ◽  
Mustafa N. Okur ◽  
Xiuli Dan ◽  
Deborah L. Croteau ◽  
...  

Aging is a major risk factor for many types of cancer, and the molecular mechanisms implicated in aging, progeria syndromes, and cancer pathogenesis display considerable similarities. Maintaining redox homeostasis, efficient signal transduction, and mitochondrial metabolism is essential for genome integrity and for preventing progression to cellular senescence or tumorigenesis. NAD+is a central signaling molecule involved in these and other cellular processes implicated in age-related diseases and cancer. Growing evidence implicates NAD+decline as a major feature of accelerated aging progeria syndromes and normal aging. Administration of NAD+precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) offer promising therapeutic strategies to improve health, progeria comorbidities, and cancer therapies. This review summarizes insights from the study of aging and progeria syndromes and discusses the implications and therapeutic potential of the underlying molecular mechanisms involved in aging and how they may contribute to tumorigenesis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254447
Author(s):  
Marcos Francia ◽  
Martin Stortz ◽  
Camila Vazquez Echegaray ◽  
Camila Oses ◽  
Paula Verneri ◽  
...  

Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-β and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.


PLoS Genetics ◽  
2012 ◽  
Vol 8 (11) ◽  
pp. e1003059 ◽  
Author(s):  
Sandra C. P. De Castro ◽  
Ashraf Malhas ◽  
Kit-Yi Leung ◽  
Peter Gustavsson ◽  
David J. Vaux ◽  
...  

2001 ◽  
Vol 114 (20) ◽  
pp. 3643-3653 ◽  
Author(s):  
Madeleine Kihlmark ◽  
Gabriela Imreh ◽  
Einar Hallberg

We have produced new antibodies specific for the integral pore membrane protein POM121. Using these antibodies we show that during apoptosis POM121 becomes proteolytically degraded in a caspase-dependent manner. The POM121 antibodies and antibodies specific for other proteins of the nuclear envelope were used in a comparative study of nuclear apoptosis in staurosporine-treated buffalo rat liver cells. Nuclei from these cells were classified in three different stages of apoptotic progression: stage I, moderately condensed chromatin surrounded by a smooth nuclear periphery; stage II, compact patches of condensed chromatin collapsing against a smooth nuclear periphery; stage III, round compact chromatin bodies surrounded by grape-shaped nuclear periphery. We have performed double labeling immunofluorescence microscopy of individual apoptotic cells and quantitative immunoblotting analysis of total proteins from apoptotic cell cultures. The results showed that degradation of nuclear envelope marker proteins occurred in a specific order. POM121 degradation occurred surprisingly early and was initiated before nucleosomal DNA degradation could be detected using TUNEL assay and completed before clustering of the nuclear pores. POM121 was eliminated significantly more rapid compared with NUP153 (a peripheral protein located in the nucleoplasmic basket of the nuclear pore complex) and lamin B (a component of the nuclear lamina). Disappearance of NUP153 and lamin B was coincident with onset of DNA fragmentation and clustering of nuclear pores. By contrast, the peripheral NPC protein p62 was degraded much later. The results suggest that degradation of POM121 may be an important early step in propagation of nuclear apoptosis.


2020 ◽  
pp. jbc.RA120.015142
Author(s):  
Yoshitami Hashimoto ◽  
Hirofumi Tanaka

DNA replication is a major contributor to genomic instability and protection against DNA replication perturbation is essential for normal cell division. Certain types of replication stress agents, such as aphidicolin and hydroxyurea, have been shown to cause reversible replication fork stalling, wherein replisome complexes are stably maintained with competence to restart in the S-phase of the cell cycle. If these stalled forks persist into the M-phase without a replication restart, replisomes are disassembled in a p97-dependent pathway and under-replicated DNA is subjected to mitotic DNA repair synthesis. Here, using Xenopus egg extracts, we investigated the consequences that arise when stalled forks are released simultaneously with the induction of mitosis. Ara-cytidine-5’-triphosphate (Ara-CTP)-induced stalled forks were able to restart with the addition of excess dCTPduring early mitosis before the nuclear envelope breakdown (NEB). However, stalled forks could no longer restart efficiently after NEB. Although replisome complexes were finally disassembled in a p97-dependent manner during mitotic progression whether or not fork stalling was relieved, the timing of NEB was delayed with the ongoing forks, rather than the stalled forks, and the delay was dependent on Wee1/Myt1 kinase activities. Thus, ongoing DNA replication was found to be directly linked to the regulation of Wee1/Myt1 kinases to modulate cyclin-dependent kinase (CDK) activities, owing to which DNA replication and mitosis occur in a mutually exclusive and sequential manner.


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 664 ◽  
Author(s):  
Romero-Bueno ◽  
de la Cruz Ruiz ◽  
Artal-Sanz ◽  
Askjaer ◽  
Dobrzynska

The eukaryotic nucleus controls most cellular processes. It is isolated from the cytoplasm by the nuclear envelope, which plays a prominent role in the structural organization of the cell, including nucleocytoplasmic communication, chromatin positioning, and gene expression. Alterations in nuclear composition and function are eminently pronounced upon stress and during premature and physiological aging. These alterations are often accompanied by epigenetic changes in histone modifications. We review, here, the role of nuclear envelope proteins and histone modifiers in the 3-dimensional organization of the genome and the implications for gene expression. In particular, we focus on the nuclear lamins and the chromatin-associated protein BAF, which are linked to Hutchinson–Gilford and Nestor–Guillermo progeria syndromes, respectively. We also discuss alterations in nuclear organization and the epigenetic landscapes during normal aging and various stress conditions, ranging from yeast to humans.


Sign in / Sign up

Export Citation Format

Share Document