scholarly journals Codon optimality is the primary contributor to the exceptional mutational sensitivity of CcdA antitoxin in its operonic context

2022 ◽  
Author(s):  
Soumyanetra Chandra ◽  
Kritika Gupta ◽  
Shruti Khare ◽  
Pehu Kohli ◽  
Aparna Asok ◽  
...  

Deep mutational scanning studies suggest that single synonymous mutations are typically silent and that most exposed, non active-site residues are tolerant to mutations. Here we show that the ccdA antitoxin component of the E.coli ccdAB toxin-antitoxin operonic system is unusually sensitive to mutations when studied in the operonic context. A large fraction (~80%) of single codon mutations, including many synonymous mutations in the ccdA gene show inactive phenotypes that are correlated with the E.coli codon usage frequency but retain native-like binding affinity towards cognate toxin, CcdB. Therefore, the observed phenotypic effects are largely not due to alterations in protein structure or stability, consistent with the fact that a large region of CcdA is intrinsically disordered. In select cases, proteomics studies reveal altered ratios of CcdA:CcdB protein levels in vivo, suggesting that these mutations likely alter relative translation efficiencies of the two genes in the operon. We extend these results by predicting and validating single synonymous mutations that lead to loss of function phenotypes in the relBE operon upon introduction of rarer codons. Thus, in their native context, genes are likely to be more sensitive to both synonymous and non-synonymous point mutations than inferred from previous saturation mutagenesis studies.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Encarnación Medina-Carmona ◽  
Rogelio J. Palomino-Morales ◽  
Julian E. Fuchs ◽  
Esperanza Padín-Gonzalez ◽  
Noel Mesa-Torres ◽  
...  

Abstract Protein dynamics is essential to understand protein function and stability, even though is rarely investigated as the origin of loss-of-function due to genetic variations. Here, we use biochemical, biophysical, cell and computational biology tools to study two loss-of-function and cancer-associated polymorphisms (p.R139W and p.P187S) in human NAD(P)H quinone oxidoreductase 1 (NQO1), a FAD-dependent enzyme which activates cancer pro-drugs and stabilizes several oncosuppressors. We show that p.P187S strongly destabilizes the NQO1 dimer in vitro and increases the flexibility of the C-terminal domain, while a combination of FAD and the inhibitor dicoumarol overcome these alterations. Additionally, changes in global stability due to polymorphisms and ligand binding are linked to the dynamics of the dimer interface, whereas the low activity and affinity for FAD in p.P187S is caused by increased fluctuations at the FAD binding site. Importantly, NQO1 steady-state protein levels in cell cultures correlate primarily with the dynamics of the C-terminal domain, supporting a directional preference in NQO1 proteasomal degradation and the use of ligands binding to this domain to stabilize p.P187S in vivo. In conclusion, protein dynamics are fundamental to understanding loss-of-function in p.P187S and to develop new pharmacological therapies to rescue this function.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


2020 ◽  
Author(s):  
Hadjara Sidibé ◽  
Yousra Khalfallah ◽  
Shangxi Xiao ◽  
Nicolás B. Gómez ◽  
Elizabeth M.H. Tank ◽  
...  

ABSTRACTTDP-43 nuclear depletion and concurrent cytoplasmic accumulation in vulnerable neurons is a hallmark feature of progressive neurodegenerative proteinopathies such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cellular stress signalling and stress granule dynamics are now recognized to play a role in ALS/FTD pathogenesis. Defective stress granule assembly is associated with increased cellular vulnerability and death. G3BP1 (Ras-GAP SH3-domain-binding protein 1) is a critical stress granule assembly factor. Here, we define that TDP-43 stabilizes G3BP1 transcripts via direct binding of a highly conserved cis regulatory element within the 3’UTR. Moreover, we show in vitro and in vivo that nuclear TDP-43 depletion is sufficient to reduce G3BP1 protein levels. Finally, we establish that G3BP1 transcripts are reduced in ALS/FTD patient neurons bearing TDP-43 cytoplasmic inclusions/nuclear depletion. Thus, our data suggest that, in ALS/FTD, there is a compromised stress granule response in disease-affected neurons due to impaired G3BP1 mRNA stability caused by TDP-43 nuclear depletion. These data implicate TDP-43 and G3BP1 loss of function as contributors to disease.


Author(s):  
Aránzazu Chamorro-Jorganes ◽  
Walid K. Sweaad ◽  
Rajesh Katare ◽  
Marie Besnier ◽  
Maryam Anwar ◽  
...  

Objective: Postnatal angiogenesis is critical in vascular homeostasis and repair. m 6 A RNA methylation is emerging as a new layer for fine-tuning gene expression. Although the contribution of the m 6 A-catalyzing enzyme, METTL3 (methyltransferase-like 3), in cancer biology has been described, its role in endothelial cell (EC) function, particularly during angiogenesis, remains unclear. Approach and Results: To characterize the relevance of METTL3 in angiogenesis regulation, we performed gain- and loss-of-function studies in vitro. We demonstrated that depletion of METTL3 in ECs reduced the level of m 6 A and impaired EC function, whereas adenovirus-mediated METTL3 overexpression increased angiogenesis. Mechanistically, we showed that METTL3 depletion in ECs decreased mature angiogenic microRNAs let-7e-5p and the miR-17-92 cluster, and increased the expression of their common target, Tsp1 (thrombospondin 1). Conversely, Ad.METTL3 increased the expression of let-7e-5p and miR-17-92 cluster and reduced protein levels of Tsp1 in ECs. Moreover, overexpression of let-7e-5p and miR-18a-5p restored the angiogenic potential of METTL3-depleted ECs. We corroborated our data in vivo employing 3 mouse models. When tested in an in vivo Matrigel plug assay, METTL3-depleted ECs had diminished ability to vascularize the plug, whereas overexpression of METTL3 promoted angiogenesis. Local Ad.METTL3 gene transfer increased postischemic neovascularization in mice with either unilateral limb ischemia or myocardial infarction. Conclusions: METTL3 regulates m 6 A RNA methylation in ECs. Endogenous METTL3 is essential for EC function and angiogenesis, potentially through influencing let-7e and miR-17-92 cluster processing. Thus, the therapeutic modulation of METTL3 should be considered as a new approach for controlling angiogenic responses in the clinical setting.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Wen Ni ◽  
Su Yao ◽  
Yunxia Zhou ◽  
Yuanyuan Liu ◽  
Piao Huang ◽  
...  

Abstract Background YAP activation is crucial for cancer development including colorectal cancer (CRC). Nevertheless, it remains unclear whether N6-Methyladenosine (m6A) modified transcripts of long noncoding RNAs (lncRNAs) can regulate YAP activation in cancer progression. We investigated the functional link between lncRNAs and the m6A modification in YAP signaling and CRC progression. Methods YAP interacting lncRNAs were screened by RIP-sequencing, RNA FISH and immunofluorescence co-staining assays. Interaction between YAP and lncRNA GAS5 was studied by biochemical methods. MeRIP-sequencing combined with lncRNA-sequencing were used to identify the m6A modified targets of YTHDF3 in CRC. Gain-of-function and Loss-of-function analysis were performed to measure the function of GAS5-YAP-YTHDF3 axis in CRC progression in vitro and in vivo. Results GAS5 directly interacts with WW domain of YAP to facilitate translocation of endogenous YAP from the nucleus to the cytoplasm and promotes phosphorylation and subsequently ubiquitin-mediated degradation of YAP to inhibit CRC progression in vitro and in vivo. Notably, we demonstrate the m6A reader YTHDF3 not only a novel target of YAP but also a key player in YAP signaling by facilitating m6A-modified lncRNA GAS5 degradation, which profile a new insight into CRC progression. Clinically, lncRNA GAS5 expressions is negatively correlated with YAP and YTHDF3 protein levels in tumors from CRC patients. Conclusions Our study uncovers a negative functional loop of lncRNA GAS5-YAP-YTHDF3 axis, and identifies a new mechanism for m6A-induced decay of GAS5 on YAP signaling in progression of CRC which may offer a promising approach for CRC treatment.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 215 ◽  
Author(s):  
Hossein Gouran ◽  
Sandeep Chakraborty ◽  
Basuthkar J. Rao ◽  
Bjarni Asgeirsson ◽  
Abhaya M. Dandekar

Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors ofXylella fastidiosa(LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we presentin vivovalidation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein fromXanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providingin silicovalidation before proceeding to the laboriousin vivowork. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction.


2014 ◽  
Vol 25 (7) ◽  
pp. 1037-1049 ◽  
Author(s):  
Karen McNally ◽  
Evan Berg ◽  
Daniel B. Cortes ◽  
Veronica Hernandez ◽  
Paul E. Mains ◽  
...  

Assembly of Caenorhabditis elegans female meiotic spindles requires both MEI-1 and MEI-2 subunits of the microtubule-severing ATPase katanin. Strong loss-of-function mutants assemble apolar intersecting microtubule arrays, whereas weaker mutants assemble bipolar meiotic spindles that are longer than wild type. To determine whether katanin is also required for spindle maintenance, we monitored metaphase I spindles after a fast-acting mei-1(ts) mutant was shifted to a nonpermissive temperature. Within 4 min of temperature shift, bivalents moved off the metaphase plate, and microtubule bundles within the spindle lengthened and developed a high degree of curvature. Spindles eventually lost bipolar structure. Immunofluorescence of embryos fixed at increasing temperature indicated that MEI-1 was lost from spindle microtubules before loss of ASPM-1, indicating that MEI-1 and ASPM-1 act independently at spindle poles. We quantified the microtubule-severing activity of purified MEI-1/MEI-2 complexes corresponding to six different point mutations and found a linear relationship between microtubule disassembly rate and meiotic spindle length. Previous work showed that katanin is required for severing at points where two microtubules intersect in vivo. We show that purified MEI-1/MEI-2 complexes preferentially sever at intersections between two microtubules and directly bundle microtubules in vitro. These activities could promote parallel/antiparallel microtubule organization in meiotic spindles.


Blood ◽  
2019 ◽  
Vol 133 (12) ◽  
pp. 1346-1357 ◽  
Author(s):  
Caterina Marconi ◽  
Christian A. Di Buduo ◽  
Kellie LeVine ◽  
Serena Barozzi ◽  
Michela Faleschini ◽  
...  

Abstract Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count that may result in bleeding tendency. Despite progress being made in defining the genetic causes of ITs, nearly 50% of patients with familial thrombocytopenia are affected with forms of unknown origin. Here, through exome sequencing of 2 siblings with autosomal-recessive thrombocytopenia, we identified biallelic loss-of-function variants in PTPRJ. This gene encodes for a receptor-like PTP, PTPRJ (or CD148), which is expressed abundantly in platelets and megakaryocytes. Consistent with the predicted effects of the variants, both probands have an almost complete loss of PTPRJ at the messenger RNA and protein levels. To investigate the pathogenic role of PTPRJ deficiency in hematopoiesis in vivo, we carried out CRISPR/Cas9-mediated ablation of ptprja (the ortholog of human PTPRJ) in zebrafish, which induced a significantly decreased number of CD41+ thrombocytes in vivo. Moreover, megakaryocytes of our patients showed impaired maturation and profound defects in SDF1-driven migration and formation of proplatelets in vitro. Silencing of PTPRJ in a human megakaryocytic cell line reproduced the functional defects observed in patients’ megakaryocytes. The disorder caused by PTPRJ mutations presented as a nonsyndromic thrombocytopenia characterized by spontaneous bleeding, small-sized platelets, and impaired platelet responses to the GPVI agonists collagen and convulxin. These platelet functional defects could be attributed to reduced activation of Src family kinases. Taken together, our data identify a new form of IT and highlight a hitherto unknown fundamental role for PTPRJ in platelet biogenesis.


2020 ◽  
Author(s):  
Zhanwang Wang ◽  
Dong He ◽  
Yuxing Zhu ◽  
Xueying Hu ◽  
Yi Jin ◽  
...  

Abstract Background: Increasing evidence have emphasized the importance of long non-coding RNAs (lncRNAs) in various human cancers progression. Forkhead box D1 antisense RNA1 (FOXD1-AS1) is a novel lncRNA and plays vital regulatory role in diverse biological processes of cancers. However, the biological function, molecular mechanism and clinical significance of FOXD1-AS1 in nasopharyngeal carcinoma is still unknown.Methods: Comprehensive bioinformatics analysis and qRT-PCR was conducted to detect the expression level of FOXD1-AS1. Loss-of-function and gain-of-function experiments were performed to verify the functions of FOXD1-AS1 in proliferation, migration, invasion, apoptosis and glycolysis of nasopharyngeal carcinoma in vitro and in vivo. Further bioinformatics analysis and experiments were carried out to explore the underlying molecular mechanisms of FOXD1-AS1. Results: FOXD1-AS1 was significantly overexpressed in nasopharyngeal carcinoma and associated with poor survival in patients. Knockdown of FOXD1-AS1 significantly inhibited cell proliferation, migration, invasion and glycolysis, and promotes apoptosis in nasopharyngeal carcinoma, whereas over-expression of FOXD1-AS1 has the opposite effect. Mechanistically, we found that FOXD1-AS1 could upregulate the expression of FOXD1 through stabilizing the FOXD1 expression at mRNA and protein levels, and FOXD1 increased the glycolysis level by transcriptionally upregulating the expression of LDHA, PKM and ENO1, thus playing an oncogenic role in nasopharyngeal carcinoma progression. Conclusion: FOXD1-AS1 plays a critical regulatory role in nasopharyngeal carcinoma. The identified FOXD1-AS1/FOXD1 axis may serve as a potential prognostic biomarker and therapeutic target for patients with nasopharyngeal carcinoma.


Sign in / Sign up

Export Citation Format

Share Document