scholarly journals Resilient T cell responses to B.1.1.529 (Omicron) SARS-CoV-2 variant

Author(s):  
Mladen Jergovic ◽  
Christopher P Coplen ◽  
Jennifer L Uhrlaub ◽  
Shawn C Beitel ◽  
Jefferey L Burgess ◽  
...  

Emergence of the SARS-CoV-2 variant-of-concern (VOC) B.1.1.529 (Omicron) in late 2021 has raised alarm among scientific and health care communities due to a surprisingly large number of mutations in its spike protein. Public health surveillance indicates that the Omicron variant is significantly more contagious than the previously dominant VOC, B.1.617.2 (Delta). Several early reports demonstrated that Omicron exhibits a higher degree (~10-30-fold) of escape from antibody neutralization compared to earlier lineage variants. Therefore, it is critical to determine how well the second line of adaptive immunity, T cell memory, performs against Omicron in people following COVID-19 infection and/or vaccination. To that purpose, we analyzed a cohort (n=345 subjects) of two- or three- dose messenger RNA (mRNA) vaccine recipients and COVID-19 post infection subjects (including those receiving 2 doses of mRNA vaccine after infection), recruited to the CDC-sponsored AZ HEROES research study, alongside 32 pre-pandemic control samples. We report that T cell responses against Omicron spike peptides were largely preserved in all cohorts with established immune memory. IFN-gamma producing T cell responses remained equivalent to the response against the ancestral strain (WA1/2020), with some (<20%) loss in IL-2 single- or IL-2+IFN-gamma+ poly-functional responses. Three-dose vaccinated participants had similar responses to Omicron relative to convalescent or convalescent plus two-dose vaccinated groups and exhibited responses significantly higher than those receiving two mRNA vaccine doses. These results provide further evidence that a three-dose vaccine regimen benefits the induction of optimal functional T cell immune memory.

2021 ◽  
Vol 12 ◽  
Author(s):  
Cheleka A. M. Mpande ◽  
Pia Steigler ◽  
Tessa Lloyd ◽  
Virginie Rozot ◽  
Boitumelo Mosito ◽  
...  

Reversion of immune sensitization tests for Mycobacterium tuberculosis (M.tb) infection, such as interferon-gamma release assays or tuberculin skin test, has been reported in multiple studies. We hypothesized that QuantiFERON-TB Gold (QFT) reversion is associated with a decline of M.tb-specific functional T cell responses, and a distinct pattern of T cell and innate responses compared to persistent QFT+ and QFT- individuals. We compared groups of healthy adolescents (n=~30 each), defined by four, 6-monthly QFT tests: reverters (QFT+/+/-/-), non-converters (QFT-/-/-/-) and persistent positives (QFT+/+/+/+). We stimulated peripheral blood mononuclear cells with M.tb antigens (M.tb lysate; CFP-10/ESAT-6 and EspC/EspF/Rv2348 peptide pools) and measured M.tb-specific adaptive T cell memory, activation, and functional profiles; as well as functional innate (monocytes, natural killer cells), donor-unrestricted T cells (DURT: γδ T cells, mucosal-associated invariant T and natural killer T-like cells) and B cells by flow cytometry. Projection to latent space discriminant analysis was applied to determine features that best distinguished between QFT reverters, non-converters and persistent positives. No longitudinal changes in immune responses to M.tb were observed upon QFT reversion. M.tb-specific Th1 responses detected in reverters were of intermediate magnitude, higher than responses in QFT non-converters and lower than responses in persistent positives. About one third of reverters had a robust response to CFP-10/ESAT-6. Among those with measurable responses, lower proportions of TSCM (CD45RA+CCR7+CD27+) and early differentiated (CD45RA-) IFN-γ-TNF+IL-2- M.tb lysate-specific CD4+ cells were observed in reverters compared with non-converters. Conversely, higher proportions of early differentiated and lower proportions of effector (CD45RA-CCR7-) CFP10/ESAT6-specific Th1 cells were observed in reverters compared to persistent-positives. No differences in M.tb-specific innate, DURT or B cell functional responses were observed between the groups. Statistical modelling misclassified the majority of reverters as non-converters more frequently than they were correctly classified as reverters or misclassified as persistent positives. These findings suggest that QFT reversion occurs in a heterogeneous group of individuals with low M.tb-specific T cell responses. In some individuals QFT reversion may result from assay variability, while in others the magnitude and differentiation status of M.tb-specific Th1 cells are consistent with well-controlled M.tb infection.


2021 ◽  
Author(s):  
Anastasia A Minervina ◽  
Mikhail V Pogorelyy ◽  
Allison M Kirk ◽  
Emma Kaitlynn Allen ◽  
Kim J Allison ◽  
...  

SARS-CoV-2 mRNA vaccines, including Pfizer/Biontech BNT162b2, were shown to be effective for COVID-19 prevention, eliciting both robust antibody responses in naive individuals and boosting pre-existing antibody levels in SARS-CoV-2-recovered individuals. However, the magnitude, repertoire, and phenotype of epitope-specific T cell responses to this vaccine, and the effect of vaccination on pre-existing T cell memory in SARS-CoV-2 convalescent patients, are still poorly understood. Thus, in this study we compared epitope-specific T cells elicited after natural SARS-CoV-2 infection, and vaccination of both naive and recovered individuals. We collected peripheral blood mononuclear cells before and after BNT162b2 vaccination and used pools of 18 DNA-barcoded MHC-class I multimers, combined with scRNAseq and scTCRseq, to characterize T cell responses to several immunodominant epitopes, including a spike-derived epitope cross-reactive to common cold coronaviruses. Comparing responses after infection or vaccination, we found that T cells responding to spike-derived epitopes show similar magnitudes of response, memory phenotypes, TCR repertoire diversity, and αβTCR sequence motifs, demonstrating the potency of this vaccination platform. Importantly, in COVID-19-recovered individuals receiving the vaccine, pre-existing spike-specific memory cells showed both clonal expansion and a phenotypic shift towards more differentiated CCR7-CD45RA+ effector cells. In-depth analysis of T cell receptor repertoires demonstrates that both vaccination and infection elicit largely identical repertoires as measured by dominant TCR motifs and receptor breadth, indicating that BNT162b2 vaccination largely recapitulates T cell generation by infection for all critical parameters. Thus, BNT162b2 vaccination elicits potent spike-specific T cell responses in naive individuals and also triggers the recall T cell response in previously infected individuals, further boosting spike-specific responses but altering their differentiation state. Overall, our study demonstrates the potential of mRNA vaccines to induce, maintain, and shape T cell memory through vaccination and revaccination.


2017 ◽  
Vol 114 (51) ◽  
pp. E10956-E10964 ◽  
Author(s):  
Andrew Chancellor ◽  
Anna S. Tocheva ◽  
Chris Cave-Ayland ◽  
Liku Tezera ◽  
Andrew White ◽  
...  

Tuberculosis (TB), caused byMycobacterium tuberculosis, remains a major human pandemic. Germline-encoded mycolyl lipid-reactive (GEM) T cells are donor-unrestricted and recognize CD1b-presented mycobacterial mycolates. However, the molecular requirements governing mycolate antigenicity for the GEM T cell receptor (TCR) remain poorly understood. Here, we demonstrate CD1b expression in TB granulomas and reveal a central role for meromycolate chains in influencing GEM-TCR activity. Meromycolate fine structure influences T cell responses in TB-exposed individuals, and meromycolate alterations modulate functional responses by GEM-TCRs. Computational simulations suggest that meromycolate chain dynamics regulate mycolate head group movement, thereby modulating GEM-TCR activity. Our findings have significant implications for the design of future vaccines that target GEM T cells.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S961-S961
Author(s):  
Jessica Flynn ◽  
Kara Cox ◽  
Sinoeun Touch ◽  
Yangsi Ou ◽  
Teresa Weber ◽  
...  

Abstract Background In response to immune pressure, influenza virus evolves, producing drifted variants capable of escaping immune recognition. One strategy for inducing a broad-spectrum immune response that can recognize multiple antigenically diverse strains is to target conserved proteins or protein domains. To that end, we assessed the immunogenicity of mRNA vaccines encoding the stem domain of hemagglutinin (HA) or nucleoprotein (NP) in nonhuman primates (NHPs). Methods Rhesus macaques were immunized three times intramuscularly, at 28 day intervals, with lipid nanoparticle-encapsulated mRNA encoding either HA stem (Yassine et al, 2015) or NP. Serum and PBMCs were collected up to 14 or 24 weeks, respectively, after the last vaccination. The magnitude and durability of humoral and cell-mediated immunity were evaluated. ELISA, competition ELISA, an in vitro antibody-dependent cell-mediated cytotoxicity (ADCC) reporter bioassay, and microneutralization assays were used to characterize serum immune responses. Intracellular cytokine staining (IFN-gamma and IL-2) was used to assess antigen-specific T-cell responses. Results HA stem-immunized NHPs developed a robust anti-stem binding titer after a single vaccine dose, and after two doses, serum antibodies recognized several antigenically distinct Group 1 HA proteins. This broad antibody response persisted for at least 14 weeks post-dose 3 (PD3). Serum antibodies showed ADCC activity and competed with a well-characterized broadly neutralizing antibody, CR9114, for binding to HA stem; however, the polyclonal serum had only minimal activity against a panel of H1N1 viruses in a microneutralization assay. HA-specific CD4+ T-cell responses were detectable PD3. A robust antibody binding response was also detected in NP-vaccinated NHPs, and titers remained high for at least 14 weeks PD3. Additionally, these animals developed robust NP-specific T-cell responses that persisted for at least 24 weeks PD3. On average, 0.5% of CD4+ and 4% of CD8+ T cells produced IFN-gamma in response to NP peptide stimulation at the peak of the response, 2 weeks after the last vaccine dose was administered. Conclusion Lipid nanoparticle-encapsulated mRNA vaccines encoding conserved influenza antigens induce a robust and durable immune response in NHPs. Disclosures All authors: No reported disclosures.


2004 ◽  
Vol 85 (10) ◽  
pp. 3017-3026 ◽  
Author(s):  
Christina Bartholdy ◽  
Wieslawa Olszewska ◽  
Anette Stryhn ◽  
Allan Randrup Thomsen ◽  
Peter J. M. Openshaw

A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M282–90), linked covalently to human β 2-microglobulin (β 2m). Cutaneous gene-gun immunization of BALB/c mice with this construct induced an antigen-specific CD8+ T-cell memory. After intranasal RSV challenge, accelerated CD8+ T-cell responses were observed in pulmonary lymph nodes and virus clearance from the lungs was enhanced. The construct induced weaker CD8+ T-cell responses than those elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the β 2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and β 2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8+ T-cell responses were not induced. Thus, in addition to specific CD8+ T cell-mediated immunopathology, gene-gun DNA vaccination causes non-specific enhancement of RSV disease without affecting virus clearance.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2413-2413 ◽  
Author(s):  
Ahmad Faisal Karim ◽  
Pooja Vir ◽  
Devi Gunasekera ◽  
Allen I. Stering ◽  
Kenneth Lieuw ◽  
...  

The existence of natural antibodies recognizing endogenous factor VIII (FVIII) and of FVIII-specific CD4+ T-cell responses in some healthy, non-hemophilic blood donors has been appreciated for >20 years. The Conti-Fine group measured CD4+ T-cell proliferation following in vitro stimulation with FVIII protein or synthetic FVIII peptides. More recently, FVIII-specific CD4+ T-cell lines were expanded from PBMCs isolated from large blood volumes donated by healthy individuals, and estimates of specific precursor frequency (~2/million CD4+ T cells) were calculated on the basis of interferon (IFN)-gamma ELISPOT assays of FVIII-stimulated cells (Meuniere et al., Blood Advances 1(21): 1842-7). Escape of these self-reactive precursor cells from thymic editing via deletion or anergy and their subsequent persistence in the periphery may contribute to the rare but potentially severe autoimmune reactions to FVIII ("acquired hemophilia A") and to the unusual immunogenicity of therapeutic FVIII administered i.v. to hemophilia A patients. The present study sought to further characterize CD4+ T-cell responses to endogenous FVIII and to map epitopes recognized by these self-reactive cells. We were particularly interested to learn if these cells recognize multiple epitopes in FVIII or if they respond to only several immunodominant epitopes. Accordingly, IFN-gamma ELISPOT assays were carried out by stimulating CD4+ T cells with 15-mer FVIII peptides having 12-residue overlaps and spanning the FVIII A1, A2, A3, C1 and C2 domains. For efficient mapping, initial assays utilized large pools of peptides, and positive responses were then "decoded" by ELISPOTs using smaller peptide pools or individual peptides. Blood samples were obtained from healthy controls under approved IRB protocols. The ELISPOT assays utilized CD4+ T cells isolated by negative selection, with irradiated autologous PBMCs as antigen presenting cells. Anti-CD49d/CD28 monoclonal antibodies were added for co-stimulation to increase the sensitivity of the assay and cells were cultured with IL-7 to improve cell viability. As a result, this assay required smaller blood volumes, but it should be noted that lower-avidity T-cell responses were likely detected that might be missed in ELISPOT assays without these modifications. Relevance of such low-avidity self-reactive cells is provided by the clinical observation, consistent with basic immunological principles, that risk factors for autoimmune responses to FVIII include old age (pro-inflammatory), trauma, surgery and postpartum status, all of which up-regulate T-cell co-stimulatory factors. The first subject had HLA-DRB1*01:01 and HLA-DRB1*08:04 alleles. Stimulation with large peptide pools and rFVIII protein indicated recognition of epitopes in at least 3 FVIII domains. Additional ELISPOTs tested the immunogenicity of 15 peptides corresponding to FVIII peptides previously demonstrated to be presented on dendritic cells from 2 individuals with an HLA-DRB1*01:01 allele (van Haren et al., Mol Cell Proteomics. 2011;10(6)), ensuring that our assays included tests of naturally processed FVIII peptides. Two of these peptides, both from the FVIII A1 domain, produced ELISPOT readings above background levels. T cells were then stimulated with these peptides for 19 days, stained with peptide-loaded MHC Class II (HLA-DRB1*01:01) tetramers, sorted and expanded for another 14 days. Tetramer staining then confirmed isolation of CD4+ T-cell clones recognizing one of these peptides. T cells that recognize their cognate antigen with high avidity are significant drivers of allo- and autoimmune responses. Lower-avidity T cells, however, can play significant roles in pro-inflammatory settings. Tetramer staining validated our ELISPOT-based identification of specific epitopes in FVIII. We are now carrying out ELISPOT assays using pooled peptides followed by individual FVIII peptides as stimulants, to estimate the repertoire of FVIII-specific CD4+ T cells in healthy non-hemophilic individuals. Mapping of HLA-restricted T-cell epitopes will also enable future tetramer-based isolation and phenotypic characterization of these rare T cells without expanding them in culture. This will allow us to investigate the interesting question of what peripheral tolerance mechanisms prevent expansion of these self-reactive cells in vivo, except in rare cases of FVIII autoimmunity. . Disclosures Pratt: Bloodworks NW: Patents & Royalties: inventor on patents related to FVIII immunogenicity; Grifols, Inc: Research Funding.


2015 ◽  
Vol 99 (1) ◽  
pp. 120-127 ◽  
Author(s):  
Amaryllis H. Van Craenenbroeck ◽  
Evelien L.J. Smits ◽  
Sébastien Anguille ◽  
Ann Van de Velde ◽  
Barbara Stein ◽  
...  

Vaccine ◽  
2009 ◽  
Vol 27 (52) ◽  
pp. 7398-7401 ◽  
Author(s):  
L. Jones ◽  
G. Malavige ◽  
K. Jeffery ◽  
E. Kemp ◽  
J. Breuer ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Nitish Boodhoo ◽  
Shahriar Behboudi

Marek’s disease virus (MDV), the etiologic agent for Marek’s disease (MD), causes a deadly lymphoproliferative disease in chickens. Causes of the well-documented association between genetically defined lines of chicken and resistance to MD remain unknown. Here, the frequencies of IFN-gamma producing pp38 and MEQ-specific T cell responses were determined in line N (B21 haplotype; MD-resistant) and line P2a (B19 haplotype, MD-susceptible) chickens after infection with vaccine and/or virulent (RB1B) strains of MDV using both standard ex vivo and cultured chIFN-gamma ELISPOT assays. Notably, MDV infection of naïve and vaccinated MD-resistant chickens induced higher frequencies of IFN-gamma producing MDV-specific T cell responses using the cultured and ex vivo ELISPOT assay, respectively. Remarkably, vaccination did not induce or boost MEQ-specific effector T cells in the susceptible chickens, while it boosted both pp38-and MEQ-specific response in resistant line. Taken together, our results revealed that there is a direct association between the magnitude of T cell responses to pp38 and MEQ of MDV antigens and resistance to the disease.


2021 ◽  
pp. annrheumdis-2021-220626
Author(s):  
Maria Prendecki ◽  
Candice Clarke ◽  
Helena Edwards ◽  
Stacey McIntyre ◽  
Paige Mortimer ◽  
...  

ObjectiveThere is an urgent need to assess the impact of immunosuppressive therapies on the immunogenicity and efficacy of SARS-CoV-2 vaccination.MethodsSerological and T-cell ELISpot assays were used to assess the response to first-dose and second-dose SARS-CoV-2 vaccine (with either BNT162b2 mRNA or ChAdOx1 nCoV-19 vaccines) in 140 participants receiving immunosuppression for autoimmune rheumatic and glomerular diseases.ResultsFollowing first-dose vaccine, 28.6% (34/119) of infection-naïve participants seroconverted and 26.0% (13/50) had detectable T-cell responses to SARS-CoV-2. Immune responses were augmented by second-dose vaccine, increasing seroconversion and T-cell response rates to 59.3% (54/91) and 82.6% (38/46), respectively. B-cell depletion at the time of vaccination was associated with failure to seroconvert, and tacrolimus therapy was associated with diminished T-cell responses. Reassuringly, only 8.7% of infection-naïve patients had neither antibody nor T-cell responses detected following second-dose vaccine. In patients with evidence of prior SARS-CoV-2 infection (19/140), all mounted high-titre antibody responses after first-dose vaccine, regardless of immunosuppressive therapy.ConclusionSARS-CoV-2 vaccines are immunogenic in patients receiving immunosuppression, when assessed by a combination of serology and cell-based assays, although the response is impaired compared with healthy individuals. B-cell depletion following rituximab impairs serological responses, but T-cell responses are preserved in this group. We suggest that repeat vaccine doses for serological non-responders should be investigated as means to induce more robust immunological response.


Sign in / Sign up

Export Citation Format

Share Document