scholarly journals Stimulation of the final cell cycle in the stomatal lineage by the cyclin CYCD7;1 under regulation of the MYB transcription factor FOUR-LIPS

2017 ◽  
Author(s):  
Farah Patell ◽  
David Newman ◽  
Eunkyoung Lee ◽  
Zidian Xie ◽  
Carl Collins ◽  
...  

Abstract (180 words)Stomatal guard cells are formed through a sequence of asymmetric and symmetric divisions in the epidermis of the sporophyte of most land plants. We show that several D-type cyclins are consecutively activated in the stomatal linage in the epidermis of Arabidopsis thaliana. Whereas CYCD2;1 and CYCD3;2 are activated in the meristemoids early in the lineage, CYCD7;1 is activated before the final division. CYCD7;1 expression peaks in the guard mother cell, where its transcription is modulated by the FOUR-LIPS/MYB88 transcription factor. FOUR-LIPS/MYB88 interacts with the CYCD7;1 promoter and represses CYCD7;1 transcription. CYCD7;1 stimulates the final symmetric division in the stomatal lineage, since guard cell formation is delayed in the cycd7;1 mutant epidermis and guard mother cell (GMC) divisions in four-lips mutant guard mother cells are limited by loss of function of CYCD7;1. Hence, the precise activation of a specific D-type cyclin, CYCD7;1, is required for correct timing of the last symmetric division that creates the stomatal guards cells, and CYCD7;1 expression is regulated by the FLP/MYB pathway that ensures cell cycle arrest in the stomatal guard cells.Summary StatementThe formation of paired guard cells in the epidermis of the Arabidopsis thaliana shoot, requires the activity of the D-type cyclin CYCD7;1 for the normal timing of the final division.

2021 ◽  
Vol 1 (19) ◽  
pp. 205-206
Author(s):  
I.V. Pinskiy

The characteristics of various miRNA binding sites in the mRNAs of the MYB transcription factor genes of Arabidopsis thaliana, Glycine max and Vitis vinifera have been established. The most conserved miRNA binding sites were the binding sites of the miR828 family.


2020 ◽  
Vol 47 (5) ◽  
pp. 454
Author(s):  
Jian Li ◽  
Tian Chen ◽  
Fengzhen Huang ◽  
Penghui Dai ◽  
Fuxiang Cao ◽  
...  

Serious seed abortion of dove tree (Davidia involucrate Baill.) is one of the critical factors leading to the low fecundity of this species. Seed abortion is a complicated process and various factors have been verified to synergistically determine the fate of seeds. To reveal the mechanism of seed abortion in D. involucrata, we performed transcriptome analysis in normal and abortive seeds of D. involucrata. According to the transcriptome data, we noticed that most of the genes encoding a MYB transcription factor were predominantly expressed in abortive seeds. Among these, a gene named DiMYB1 was selected and its function was validated in this study. Overexpression of DiMYB1 resulted in obviously reduced viability of transgenic seeds and seedlings, and caused a significantly higher seed abortion rate. The vegetative growth of transgenic plants was hindered, resulting in an earlier flowering time. In addition, colour changes occurred in transgenic plants. Some transgenic sprouts, stems and pods appeared purple instead of green in colour. Our finding demonstrated that DiMYB1 participates in multiple plant developmental processes, especially in seed development in Arabidopsis thaliana (L.) Heynh., which indicated the similar role of this gene in D. involucrata.


2013 ◽  
Vol 55 (11) ◽  
pp. 1166-1178 ◽  
Author(s):  
Yanjie Zhang ◽  
Wanqi Liang ◽  
Jianxin Shi ◽  
Jie Xu ◽  
Dabing Zhang

2002 ◽  
Vol 22 (11) ◽  
pp. 3663-3673 ◽  
Author(s):  
Xiaolin Li ◽  
Donald P. McDonnell

ABSTRACT The B-Myb transcription factor has been implicated in coordinating the expression of genes involved in cell cycle regulation. Although it is expressed in a ubiquitous manner, its transcriptional activity is repressed until the G1-S phase of the cell cycle by an unknown mechanism. In this study we used biochemical and cell-based assays to demonstrate that the nuclear receptor corepressors N-CoR and SMRT interact with B-Myb. The significance of these B-Myb-corepressor interactions was confirmed by the finding that B-Myb mutants, which were unable to bind N-CoR, exhibited constitutive transcriptional activity. It has been shown previously that phosphorylation of B-Myb by cdk2/cyclin A enhances its transcriptional activity. We have now determined that phosphorylation by cdk2/cyclin A blocks the interaction between B-Myb and N-CoR and that mutation of the corepressor binding site within B-Myb bypasses the requirement for this phosphorylation event. Cumulatively, these findings suggest that the nuclear corepressors N-CoR and SMRT serve a previously unappreciated role as regulators of B-Myb transcriptional activity.


2013 ◽  
Vol 64 (11) ◽  
pp. 3361-3371 ◽  
Author(s):  
Fabio Rusconi ◽  
Fabio Simeoni ◽  
Priscilla Francia ◽  
Eleonora Cominelli ◽  
Lucio Conti ◽  
...  

2005 ◽  
Vol 15 (13) ◽  
pp. 1201-1206 ◽  
Author(s):  
Yun-Kuan Liang ◽  
Christian Dubos ◽  
Ian C. Dodd ◽  
Geoffrey H. Holroyd ◽  
Alistair M. Hetherington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document