scholarly journals Temporal coupling of field potentials and action potentials in the neocortex

2017 ◽  
Author(s):  
Brendon O. Watson ◽  
Mingxin Ding ◽  
György Buzsáki

AbstractThe local field potential (LFP) is an aggregate measure of group neuronal activity and is often correlated with the action potentials of single neurons. In recent years investigators have found that action potential firing rates increase during elevations in power high-frequency band oscillations (50-200 Hz range). However action potentials also contribute to the LFP signal itself, making the spike–LFP relationship complex. Here we examine the relationship between spike rates and LFPs in varying frequency bands in rat neocortical recordings. We find that 50-180Hz oscillations correlate most consistently with high firing rates, but that other LFPs bands also carry information relating to spiking, including in some cases anti-correlations. Relatedly, we find that spiking itself and electromyographic activity contribute to LFP power in these bands. The relationship between spike rates and LFP power varies between brain states and between individual cells. Finally, we create an improved oscillation-based predictor of action potential activity by specifically utilizing information from across the entire recorded frequency spectrum of LFP. The findings illustrate both caveats and improvements to be taken into account in attempts to infer spiking activity from LFP.

Function ◽  
2021 ◽  
Author(s):  
Nathan Grainger ◽  
Laura Guarina ◽  
Robert H Cudmore ◽  
L Fernando Santana

Abstract The cardiac cycle starts when an action potential is produced by pacemaking cells in the sino-atrial node. This cycle is repeated approximately 100,000 times in humans and 1 million times in mice per day, imposing a monumental metabolic demand on the heart, requiring efficient blood supply via the coronary vasculature to maintain cardiac function. Although the ventricular coronary circulation has been extensively studied, the relationship between vascularization and cellular pacemaking modalities in the sino-atrial node is poorly understood. Here, we tested the hypothesis that the organization of the sino-atrial node micro-vasculature varies regionally, reflecting local myocyte firing properties. We show that vessel densities are higher in the superior versus inferior sino-atrial node. Accordingly, sino-atrial node myocytes are closer to vessels in the superior versus inferior regions. Superior and inferior sino-atrial node myocytes produce stochastic subthreshold voltage fluctuations and action potentials. However, the intrinsic action potential firing rate of sino-atrial node myocytes is higher in the superior versus inferior node. Our data support a model in which the micro-vascular densities vary regionally within the sino-atrial node to match the electrical and Ca2+ dynamics of nearby myocytes, effectively determining the dominant pacemaking site within the node. In this model, the high vascular density in the superior sino-atrial node places myocytes with metabolically demanding, high frequency action potentials near vessels. The lower vascularization and electrical activity of inferior sino-atrial node myocytes could limit these cells to function to support sino-atrial node periodicity with sporadic voltage fluctuations via a stochastic resonance mechanism.


2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


2012 ◽  
Vol 302 (7) ◽  
pp. G740-G747 ◽  
Author(s):  
Galya R. Abdrakhmanova ◽  
Minho Kang ◽  
M. Imad Damaj ◽  
Hamid I. Akbarali

Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L1-L2) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation ( 1 ). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from −37 to −32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L1-L2) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.


1988 ◽  
Vol 36 (4) ◽  
pp. 363 ◽  
Author(s):  
KC Richardson ◽  
RS Wyburn

Electromyographic activity recorded by chronically implanted bipolar electrodes showed the tammar wallaby (Macropus eugenii) and the quokka (Setonix brachyurus) to have slow wave activity over the entire stomach and small intestine. Slow wave mean frequency (min-') were: 5.5 and 5.3 for the forestomach; 5.4 and 5.0 for the pylorus; 26 and 17.8 for the duodenum; and 25 and 17.5 for the ileum in the tammar and quokka, respectively. There was virtually no frequency gradient of the slow wave along the length of the small intestine in both macropods, which is extremely unusual. Action potentials were recorded from the quokka stomach but not from the tammar stomach. Action potentials were recorded from the small intestine of both species. The pattern of action potential activity was similar in both species. There were periods of up to 30 minutes during which the intestine was quiescent (q) with no action potential activity. This was followed by extended periods when bursts of action potentials occurred irregularly to be followed by periods of about 5 minutes when action potentials were associated with every slow wave.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 754 ◽  
Author(s):  
Dumitru A. Iacobas ◽  
Sanda Iacobas ◽  
Philip R. Lee ◽  
Jonathan E. Cohen ◽  
R. Douglas Fields

Transcriptional responses to the appropriate temporal pattern of action potential firing are essential for long-term adaption of neuronal properties to the functional activity of neural circuits and environmental experience. However, standard transcriptome analysis methods can be too limited in identifying critical aspects that coordinate temporal coding of action potential firing with transcriptome response. A Pearson correlation analysis was applied to determine how pairs of genes in the mouse dorsal root ganglion (DRG) neurons are coordinately expressed in response to stimulation producing the same number of action potentials by two different temporal patterns. Analysis of 4728 distinct gene-pairs related to calcium signaling, 435,711 pairs of transcription factors, 820 pairs of voltage-gated ion channels, and 86,862 pairs of calcium signaling genes with transcription factors indicated that genes become coordinately activated by distinct action potential firing patterns and this depends on the duration of stimulation. Moreover, a measure of expression variance revealed that the control of transcripts abundances is sensitive to the pattern of stimulation. Thus, action potentials impact intracellular signaling and the transcriptome in dynamic manner that not only alter gene expression levels significantly (as previously reported) but also affects the control of their expression fluctuations and profoundly remodel the transcriptional networks.


1998 ◽  
Vol 79 (5) ◽  
pp. 2358-2364 ◽  
Author(s):  
J. R. Wickens ◽  
C. J. Wilson

Wickens, J. R. and C. J. Wilson. Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. J. Neurophysiol. 79: 2358–2364, 1998. Both silent and spontaneously firing spiny projection neurons have been described in the neostriatum, but the reason for their differences in firing activity are unknown. We compared properties of spontaneously firing and silent spiny neurons in urethan-anesthetized rats. Neurons were identified as spiny projection neurons after labeling by intracellular injection of biocytin. The threshold for action-potential firing was measured under three different conditions: 1) electrical stimulation of the contralateral cerebral cortex, 2) brief directly applied current pulses, and 3) spontaneous action-potentials occurring during spontaneous episodes of depolarization (up state). The average membrane potential and the amplitude of noiselike fluctuations of membrane potential in the up state were determined by fitting a Gaussian curve to the membrane-potential distribution. All neurons in the sample exhibited spontaneous membrane potential shifts between a hyperpolarized down state and a depolarized up state, but not all fired action potentials while in the up state. The difference between the spontaneously firing and the silent spiny neurons was in the average membrane potential in the up state, which was significantly more depolarized in the spontaneously firing than in the silent spiny neurons. There were no significant differences in the threshold, the amplitude of the noiselike fluctuations of membrane potential in the up state, or in the proportion of time that the membrane potential was in the up state. In both spontaneously firing and silent neurons, the threshold for action potentials evoked by current pulses was significantly higher than for those evoked by cortical stimulation. Application of more intense current pulses that reproduced the excitatory postsynaptic potential rate of rise produced firing at correspondingly lower thresholds. Because the membrane potential in the up state is mainly determined by the balance between the synaptic drive and the outward potassium conductances activated in the subthreshold range of membrane potentials, either or both of these factors may determine whether firing occurs in response to spontaneous afferent activity.


1999 ◽  
Vol 81 (6) ◽  
pp. 2814-2822 ◽  
Author(s):  
Lawrence M. Grover ◽  
Chen Yan

Blockade of GABAA receptors facilitates induction of NMDA receptor-independent long-term potentiation. An N-methyl-d-aspartate (NMDA)-independent form of long-term potentiation (LTP), which depends on postsynaptic, voltage-dependent calcium channels (VDCCs), has been demonstrated in area CA1 of hippocampus. GABA acting at GABAA receptors limits postsynaptic depolarization during LTP induction. Blockade of GABAA receptors should therefore enhance activation of postsynaptic VDCCs and facilitate the induction of this NMDA receptor-independent, VDCC-dependent LTP. In agreement with this hypothesis, pharmacological blockade of GABAA receptors in the in vitro rat hippocampal slice increased the magnitude of LTP resulting from a normally effective, high-frequency (200 Hz) tetanic stimulation protocol. In addition, GABAA receptor blockade allowed a lower frequency (25 Hz) and normally ineffective tetanic stimulation protocol to induce this form of LTP. Intracellular recordings from CA1 pyramidal cells revealed that blocking GABAA receptors during tetanic stimulation allowed greater postsynaptic depolarization, increased the number of postsynaptic action potentials fired during the tetanization, and also increased the duration of synaptically evoked action potentials. To mimic the increased action potential firing observed when GABAAreceptors were blocked, we paired 25-Hz antidromic stimulation with 25-Hz orthodromic stimulation. Paired antidromic + orthodromic 25-Hz stimulation induced NMDA receptor-independent LTP, whereas neither antidromic nor orthodromic stimulation alone induced LTP. Increased action potential firing can therefore at least partially account for the facilitation of NMDA receptor-independent LTP caused by blockade of GABAA receptors. This conclusion is consistent with prior studies demonstrating that action potentials are particularly effective stimuli for the gating of VDCCs in CA1 pyramidal cell dendrites.


2006 ◽  
Vol 96 (5) ◽  
pp. 2792-2796 ◽  
Author(s):  
James J. Chambers ◽  
Matthew R. Banghart ◽  
Dirk Trauner ◽  
Richard H. Kramer

To trigger action potentials in neurons, most investigators use electrical or chemical stimulation. Here we describe an optical stimulation method based on semi-synthetic light-activated ion channels. These SPARK (synthetic photoisomerizable azobenzene-regulated K+) channels consist of a synthetic azobenzene-containing photoswitch and a genetically modified Shaker K+ channel protein. SPARK channels with a wild-type selectivity filter elicit hyperpolarization and suppress action potential firing when activated by 390 nm light. A mutation in the pore converts the K+-selective Shaker channel into a nonselective cation channel. Activation of this modified channel with the same wavelength of light elicits depolarization of the membrane potential. Expression of these depolarizing SPARK channels in neurons allows light to rapidly and reversibly trigger action potential firing. Hence, hyper- and depolarizing SPARK channels provide a means for eliciting opposite effects on neurons in response to the same light stimulus.


Sign in / Sign up

Export Citation Format

Share Document