scholarly journals Dual RNA-seq reveals large-scale non-conserved genotype x genotype specific genetic reprograming and molecular crosstalk in the mycorrhizal symbiosis

2018 ◽  
Author(s):  
Ivan D. Mateus ◽  
Frédéric G. Masclaux ◽  
Consolée Aletti ◽  
Edward C. Rojas ◽  
Romain Savary ◽  
...  

AbstractArbuscular mycorrhizal fungi (AMF) impact plant growth and are a major driver of plant diversity and productivity. We quantified the contribution of intra-specific genetic variability in cassava (Manihot esculenta) and Rhizophagus irregularis to gene reprogramming in symbioses using dual RNA-sequencing. A large number of cassava genes exhibited altered transcriptional responses to the fungus but transcription of most of these plant genes (72%) responded in a different direction or magnitude depending on the plant genotype. Two AMF isolates displayed large differences in their transcription, but the direction and magnitude of the transcriptional responses for a large number of these genes was also strongly influenced by the genotype of the plant host. This indicates that unlike the highly conserved plant genes necessary for the symbiosis establishment, plant and fungal gene transcriptional responses are not conserved and are greatly influenced by plant and fungal genetic differences, even at the within-species level. The transcriptional variability detected allowed us to identify an extensive gene network showing the interplay in plant-fungal reprogramming in the symbiosis. Key genes illustrated that the two organisms jointly program their cytoskeleton organisation during growth of the fungus inside roots. Our study reveals that plant and fungal genetic variation plays a strong role in shaping the genetic reprograming in response to symbiosis, indicating considerable genotype x genotype interactions in the mycorrhizal symbiosis. Such variation needs to be considered in order to understand the molecular mechanisms between AMF and their plant hosts in natural communities.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Crosino ◽  
Elisa Moscato ◽  
Marco Blangetti ◽  
Gennaro Carotenuto ◽  
Federica Spina ◽  
...  

AbstractShort chain chitooligosaccharides (COs) are chitin derivative molecules involved in plant-fungus signaling during arbuscular mycorrhizal (AM) interactions. In host plants, COs activate a symbiotic signalling pathway that regulates AM-related gene expression. Furthermore, exogenous CO application was shown to promote AM establishment, with a major interest for agricultural applications of AM fungi as biofertilizers. Currently, the main source of commercial COs is from the shrimp processing industry, but purification costs and environmental concerns limit the convenience of this approach. In an attempt to find a low cost and low impact alternative, this work aimed to isolate, characterize and test the bioactivity of COs from selected strains of phylogenetically distant filamentous fungi: Pleurotus ostreatus, Cunninghamella bertholletiae and Trichoderma viride. Our optimized protocol successfully isolated short chain COs from lyophilized fungal biomass. Fungal COs were more acetylated and displayed a higher biological activity compared to shrimp-derived COs, a feature that—alongside low production costs—opens promising perspectives for the large scale use of COs in agriculture.


2021 ◽  
Vol 10 (7) ◽  
pp. e45410716972
Author(s):  
José Luís Trevizan Chiomento ◽  
João Eduardo Carniel de Paula ◽  
Fabiola Stockmans De Nardi ◽  
Thomas dos Santos Trentin ◽  
Fernando Brollo Magro ◽  
...  

The inoculation of strawberry cultivars with arbuscular mycorrhizal fungi (AMF) is a profitable and viable biotechnological tool, with potential to improve the horticultural performance of plants. However, this biotechnology is lacking and unknown to producers. The aim of the research was to investigate whether strawberry cultivars in the absence and presence of inoculation with AMF differ in their horticultural performance. The treatments, delineated in a bifactorial scheme, were four strawberry cultivars in the absence and presence of two AMF-based inoculants. The experiment was designed in randomized blocks, with three replications. The root system of ‘Albion’ cultivar showed the highest mycorrhizal colonization. Claroideoglomus etunicatum showed greater capacity to infect plant roots. ‘Portola’ was the most productive cultivar and ‘Albion’ and ‘Aromas’ produced strawberries with the highest levels of total anthocyanins. It is concluded that the use of mycorrhizal biotechnology enhances the levels of total flavonoids in fruits of the ‘Albion’ cultivar inoculated with the fungal species C. etunicatum. The root system of ‘Albion’ cultivar has greater mycorrhizal colonization. The fungal species C. etunicatum is more effective in colonizing the roots of the plant host. It is suggested to use the ‘Portola’ cultivar to obtain higher fruit yields and the ‘Albion’ and ‘Aromas’ cultivars for producers who aim to obtain strawberries with higher levels of total anthocyanins. ‘Aromas’ is recommended for those seeking a dual purpose (production and quality).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Li Cui ◽  
Feng Guo ◽  
Jialei Zhang ◽  
Sha Yang ◽  
JingJing Meng ◽  
...  

Abstract Peanut yield is severely affected by exchangeable calcium ion (Ca2+) deficiency in the soil. Arbuscular mycorrhizal (AM) symbiosis increases the absorption of Ca2+ for host plants. Here, we analyzed the physiological and transcriptional changes in the roots of Arachis hypogaea L. colonized by Funneliformismosseae under Ca2+-deficient and -sufficient conditions. The results showed that exogenous Ca2+ application increased arbuscular mycorrhizal fungi (AMF) colonization, plant dry weight, and Ca content of AM plants. Simultaneously, transcriptome analysis showed that Ca2+ application further induced 74.5% of differentially expressed gene transcripts in roots of AM peanut seedlings. These genes are involved in AM symbiosis development, hormone biosynthesis and signal transduction, and carotenoid and flavonoid biosynthesis. The transcripts of AM-specific marker genes in AM plants with Ca2+ deprivation were further up-regulated by Ca2+ application. Gibberellic acid (GA3) and flavonoid contents were higher in roots of AM- and Ca2+-treated plants, but salicylic acid (SA) and carotenoid contents specifically increased in roots of the AM plants. Thus, these results suggest that the synergy of AM symbiosis and Ca2+ improves plant growth due to the shared GA- and flavonoid-mediated pathway, whereas SA and carotenoid biosynthesis in peanut roots are specific to AM symbiosis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ziheng Song ◽  
Yinli Bi ◽  
Jian Zhang ◽  
Yunli Gong ◽  
Huihui Yang

Abstract It is urgent to restore the ecological function in open-pit mining areas on grassland in Eastern China. The open-pit mines have abundant of mining associated clay, which is desirable for using as a soil source for ecological restoration. The mining associated clay in Hulunbuir district, Inner Mongolia was selected and mixed with a sandy soil at a ratio of 1:1 (S_C soil). Also, effects of arbuscular mycorrhizal fungi (AMF) inoculation on soil functions were studied. The aboveground and underground biomass of maize in S_C soil was 1.49 and 2.41 times higher than that of clay soil, respectively. In the topsoil and S_C soil, the growth hormone (IAA) and cytokinin (CTK) levels of maize were higher than that of clay, while abscission acid (ABA) levels were lower. The inoculation with AMF could significantly improve the biomass of maize and enhance the stress resistance of plants. Through structural equation model (SEM) analyses, it was found that the soil type and AMF inoculation had the most direct impact on maize growth and biomass content. These finds extend our knowledge regarding a low-cost method for physical and biological improvement of mining associated clay, and to provide theoretical support for large-scale application in the future.


Genome ◽  
2021 ◽  
Vol 64 (1) ◽  
pp. 15-27
Author(s):  
Fan Qiu ◽  
Seton Bachle ◽  
Ryan Estes ◽  
Melvin R. Duvall ◽  
Jesse B. Nippert ◽  
...  

Water stress associated with drought-like conditions is a major factor limiting plant growth and impacts productivity of natural plant communities and agricultural crops. Molecular responses of plants to water stress have been studied most extensively in model species and crops, few of which have evolved natural drought tolerance. In the current study, we examined physiological and transcriptomic responses at multiple timepoints during increasing water stress and following initial recovery from stress in a drought-tolerant C3 species, Festuca ovina. Results demonstrated non-linear transcriptomic changes during increasing stress, but largely linear declines in physiological measurements during this same period. Transcription factors represented approximately 12.7% of all differentially expressed genes. In total, 117 F. ovina homologs of previously identified and molecularly characterized drought-responsive plant genes were identified. This information will be valuable for further investigations of the molecular mechanisms involved in drought tolerance in C3 plants.


Mycorrhiza ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 69-83
Author(s):  
Christina Paparokidou ◽  
Jonathan R. Leake ◽  
David J. Beerling ◽  
Stephen A. Rolfe

AbstractMany plant species form symbioses with ectomycorrhizal fungi, which help them forage for limiting nutrients in the soil such as inorganic phosphate (Pi). The transcriptional responses to symbiosis and nutrient-limiting conditions in ectomycorrhizal fungal hyphae, however, are largely unknown. An artificial system was developed to study ectomycorrhizal basidiomycete Paxillus involutus growth in symbiosis with its host tree Pinus sylvestris at different Pi concentrations. RNA-seq analysis was performed on P. involutus hyphae growing under Pi-limiting conditions, either in symbiosis or alone. We show that Pi starvation and ectomycorrhizal symbiosis have an independent effect on the P. involutus transcriptome. Notably, low Pi availability induces expression of newly identified putative high-affinity Pi transporter genes, while reducing the expression of putative organic acid transporters. Additionally, low Pi availability induces a close transcriptional interplay between P and N metabolism. GTP-related signalling was found to have a positive effect in the maintenance of ectomycorrhizal symbiosis, whereas multiple putative cytochrome P450 genes were found to be downregulated, unlike arbuscular mycorrhizal fungi. We provide the first evidence of global transcriptional changes induced by low Pi availability and ectomycorrhizal symbiosis in the hyphae of P. involutus, revealing both similarities and differences with better-characterized arbuscular mycorrhizal fungi.


2020 ◽  
Vol 21 (20) ◽  
pp. 7803
Author(s):  
Julie Miro ◽  
Anne-Laure Bougé ◽  
Eva Murauer ◽  
Emmanuelle Beyne ◽  
Dylan Da Cunha ◽  
...  

The Duchenne muscular dystrophy (DMD) gene has a complex expression pattern regulated by multiple tissue-specific promoters and by alternative splicing (AS) of the resulting transcripts. Here, we used an RNAi-based approach coupled with DMD-targeted RNA-seq to identify RNA-binding proteins (RBPs) that regulate splicing of its skeletal muscle isoform (Dp427m) in a human muscular cell line. A total of 16 RBPs comprising the major regulators of muscle-specific splicing events were tested. We show that distinct combinations of RBPs maintain the correct inclusion in the Dp427m of exons that undergo spatio-temporal AS in other dystrophin isoforms. In particular, our findings revealed the complex networks of RBPs contributing to the splicing of the two short DMD exons 71 and 78, the inclusion of exon 78 in the adult Dp427m isoform being crucial for muscle function. Among the RBPs tested, QKI and DDX5/DDX17 proteins are important determinants of DMD exon inclusion. This is the first large-scale study to determine which RBP proteins act on the physiological splicing of the DMD gene. Our data shed light on molecular mechanisms contributing to the expression of the different dystrophin isoforms, which could be influenced by a change in the function or expression level of the identified RBPs.


2012 ◽  
Vol 518-523 ◽  
pp. 5381-5384
Author(s):  
Song Mei Shi ◽  
Bo Tu ◽  
Dai Jun Liu ◽  
Xiao Hong Yang

Physic nut (Jatropha curcas Linn., Euphorbiaceae) is one of the hottest biomass energy plant studied by scientists. This paper first reviewed the symbiosis relationship between physic nut and arbuscular mycorrhizal fungi. The researches have showed that diversity of arbuscular mycorrhizal fungi (AMF) exists around the rhizosphere of physic nut. The AMF hyphae colonize root tips of physic nut to develop arbuscular mycorrhizae. The construction of mycorrhizal symbiosis relationship improves the nutritional absorption, promotes the growth and development of seedlings, and enhance the stress tolerance capacity of physic nut. This paper also displays a prospect for mycorrhizal physic nut research in the future, such as mycorrhizal system, the molecular mechanism for stress resistance and gene engineering. As an important resource of biomass energy, mycorrhizal physic nut has a huge exploitation potential and practical value.


2002 ◽  
Vol 68 (4) ◽  
pp. 1919-1924 ◽  
Author(s):  
Ulrich Hildebrandt ◽  
Katharina Janetta ◽  
Hermann Bothe

ABSTRACT When surface-sterilized spores of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices Sy167 were germinated on agar plates in the slightly modified minimum mineral medium described by G. Bécard and J. A. Fortin (New Phytol. 108:211-218, 1988), slime-forming bacteria, identified as Paenibacillus validus, frequently grew up. These bacteria were able to support growth of the fungus on the agar plates. In the presence of P. validus, hyphae branched profusely and formed coiled structures. These were much more densely packed than the so-called arbuscule-like structures which are formed by AMF grown in coculture with carrot roots transformed with T-DNA from Agrobacterium rhizogenes. The presence of P. validus alone also enabled G. intraradices to form new spores, mainly at the densely packed hyphal coils. The new spores were not as abundant as and were smaller than those formed by AMF in the monoxenic culture with carrot root tissues, but they also contained lipid droplets and a large number of nuclei. In these experiments P. validus could not be replaced by bacteria such as Escherichia coli K-12 or Azospirillum brasilense Sp7. Although no conditions under which the daughter spores regerminate and colonize plants have been found yet, and no factor(s) from P. validus which stimulates fungal growth has been identified, the present findings might be a significant step forward toward growth of AMF independent of any plant host.


Sign in / Sign up

Export Citation Format

Share Document