scholarly journals Neural Flip-Flops I: Short-Term Memory

2018 ◽  
Author(s):  
Lane Yoder

AbstractThe networks proposed here show how neurons can be connected to form flip-flops, the basic building blocks in sequential logic systems. Two novel neural flip-flops (NFFs) are composed of two and four neurons. Their operation depends only on minimal neuron capabilities of excitation and inhibition. The NFFs can generate known phenomena of short-term memory. Memory tests have shown that certain neurons fire continuously at a high frequency while information is held in short-term memory. These neurons exhibit seven characteristics associated with memory formation, retention, retrieval, termination, and errors. One of the neurons in each of the NFFs produces all of the characteristics. This neuron and a second neighboring neuron together predict eight unknown phenomena. These predictions can be tested by the same methods that led to the discovery of the first seven phenomena.

2021 ◽  
Vol 224 (6) ◽  
pp. jeb242180
Author(s):  
Shione Okada ◽  
Natsumi Hirano ◽  
Toshiki Abe ◽  
Toshiki Nagayama

ABSTRACTAversive learning was applied to affect the phototactic behaviour of the marbled crayfish. Animals initially showed negative phototaxis to white light and positive taxis to blue light. Using an aversive learning paradigm, we investigated the plasticity of innate behaviour following operant conditioning. The initial rate of choosing a blue-lit exit was analysed by a dual choice experiment between blue-lit and white-lit exits in pre-test conditions. During training, electrical shocks were applied to the animals when they oriented to the blue-lit exit. Memory tests were given to analyse the orientation rate to the blue-lit exit in trials 1 and 24 h after training and these rates were compared with the pre-test. In general, animals avoided the blue-lit exit in the memory tests. When training was carried out three times, the long-term memory was retained for at least 48 h, although a single bout of training was also enough to form a long-term memory. Cooling animals at 4°C or injection of cycloheximide immediately after training altered the formation of long-term memory, but had no effect on short-term memory formation. Administration of the adenylate cyclase inhibitor SQ22536, the PKA inhibitor H89 or the CREB inhibitor KG-501 immediately after training also blocked the formation of long-term memory, but had no effect on short-term memory formation. Thus, our pharmacological behavioural analyses showed that new protein synthesis was necessary to form long-term memories and that the cAMP/PKA/CREB pathway is the main signal cascade for long-term memory formation in the marbled crayfish.


2021 ◽  
Vol 9 (6) ◽  
pp. 651
Author(s):  
Yan Yan ◽  
Hongyan Xing

In order for the detection ability of floating small targets in sea clutter to be improved, on the basis of the complete ensemble empirical mode decomposition (CEEMD) algorithm, the high-frequency parts and low-frequency parts are determined by the energy proportion of the intrinsic mode function (IMF); the high-frequency part is denoised by wavelet packet transform (WPT), whereas the denoised high-frequency IMFs and low-frequency IMFs reconstruct the pure sea clutter signal together. According to the chaotic characteristics of sea clutter, we proposed an adaptive training timesteps strategy. The training timesteps of network were determined by the width of embedded window, and the chaotic long short-term memory network detection was designed. The sea clutter signals after denoising were predicted by chaotic long short-term memory (LSTM) network, and small target signals were detected from the prediction errors. The experimental results showed that the CEEMD-WPT algorithm was consistent with the target distribution characteristics of sea clutter, and the denoising performance was improved by 33.6% on average. The proposed chaotic long- and short-term memory network, which determines the training step length according to the width of embedded window, is a new detection method that can accurately detect small targets submerged in the background of sea clutter.


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141666336 ◽  
Author(s):  
Dickson Neoh Tze How ◽  
Chu Kiong Loo ◽  
Khairul Salleh Mohamed Sahari

Learning from demonstration plays an important role in enabling robot to acquire new behaviors from human teachers. Within learning from demonstration, robots learn new tasks by recognizing a set of preprogrammed behaviors or skills as building blocks for new, potentially more complex tasks. One important aspect in this approach is the recognition of the set of behaviors that comprises the entire task. The ability to recognize a complex task as a sequence of simple behaviors enables the robot to generalize better on more complex tasks. In this article, we propose that primitive behaviors can be taught to a robot via learning from demonstration. In our experiment, we teach the robot new behaviors by demonstrating the behaviors to the robot several times. Following that, a long short-term memory recurrent neural network is trained to recognize the behaviors. In this study, we managed to teach at least six behaviors on a NAO humanoid robot and trained a long short-term memory recurrent neural network to recognize the behaviors using the supervised learning scheme. Our result shows that long short-term memory can recognize all the taught behaviors effectively, and it is able to generalize to recognize similar types of behaviors that have not been demonstrated on the robot before. We also show that the long short-term memory is advantageous compared to other neural network frameworks in recognizing the behaviors in the presence of noise in the behaviors.


2020 ◽  
Author(s):  
Yukitoshi Sakaguchi

Split-brain experiments, which have been actively conducted since the twentieth century, have provided a great deal of insight into inter-hemispheric functional laterality and interactions. However, how communication between the left and right hippocampi directly contributes to memory formation is still poorly understood. To address this issue, we cut the rat hippocampal commissure (HC) connecting the left and right hippocampi prior to behavioral tests, which comprised of four memory tasks. The result showed that cutting the HC impairs short-term memory but not long-term memory. This suggests that the HC contributes mainly to the appropriate formation of short-term memory by mediating communication between the left and right hippocampi. Our findings would help to elucidate dynamic memory formation in the hippocampus and contribute to the development of therapeutics for some neurological diseases which cause a reduction in the inter-hemispheric interaction.


Sign in / Sign up

Export Citation Format

Share Document